首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   267篇
  免费   33篇
  2021年   5篇
  2018年   3篇
  2016年   3篇
  2015年   5篇
  2014年   4篇
  2013年   4篇
  2012年   12篇
  2011年   7篇
  2010年   4篇
  2009年   5篇
  2008年   7篇
  2007年   6篇
  2006年   7篇
  2005年   10篇
  2004年   7篇
  2003年   6篇
  2002年   10篇
  2001年   11篇
  2000年   3篇
  1999年   10篇
  1997年   4篇
  1996年   5篇
  1994年   4篇
  1992年   11篇
  1991年   9篇
  1990年   7篇
  1989年   11篇
  1988年   5篇
  1987年   7篇
  1986年   7篇
  1985年   6篇
  1984年   7篇
  1983年   9篇
  1982年   9篇
  1981年   2篇
  1980年   7篇
  1979年   4篇
  1978年   5篇
  1977年   2篇
  1976年   2篇
  1975年   5篇
  1974年   6篇
  1973年   7篇
  1972年   2篇
  1971年   4篇
  1970年   4篇
  1968年   6篇
  1967年   2篇
  1966年   2篇
  1951年   1篇
排序方式: 共有300条查询结果,搜索用时 15 毫秒
41.
Fryer JD  Holtzman DM 《Neuron》2005,47(2):167-168
In this issue of Neuron, McGowan et al. report on a new mouse model of amyloid deposition as occurs in Alzheimer's disease. Unlike previous models in which overexpression of the amyloid precursor protein results in amyloid plaque formation, McGowan et al. have produced mice that overexpress only Abeta40 or Abeta42 and prove that Abeta42 is critical for the formation of amyloid deposits in vivo.  相似文献   
42.
The pathological hallmark of Alzheimer disease is the senile plaque principally composed of tightly aggregated amyloid-beta fibrils (fAbeta), which are thought to be resistant to degradation and clearance. In this study, we explored whether proteases capable of degrading soluble Abeta (sAbeta) could degrade fAbeta as well. We demonstrate that matrix metalloproteinase-9 (MMP-9) can degrade fAbeta and that this ability is not shared by other sAbeta-degrading enzymes examined, including endothelin-converting enzyme, insulin-degrading enzyme, and neprilysin. fAbeta was decreased in samples incubated with MMP-9 compared with other proteases, assessed using thioflavin-T. Furthermore, fAbeta breakdown with MMP-9 but not with other proteases was demonstrated by transmission electron microscopy. Proteolytic digests of purified fAbeta were analyzed with matrix-assisted laser desorption ionization time-of-flight mass spectrometry to identify sites of Abeta that are cleaved during its degradation. Only MMP-9 digests contained fragments (Abeta(1-20) and Abeta(1-30)) from fAbeta(1-42) substrate; the corresponding cleavage sites are thought to be important for beta-pleated sheet formation. To determine whether MMP-9 can degrade plaques formed in vivo, fresh brain slices from aged APP/PS1 mice were incubated with proteases. MMP-9 digestion resulted in a decrease in thioflavin-S (ThS) staining. Consistent with a role for endogenous MMP-9 in this process in vivo, MMP-9 immunoreactivity was detected in astrocytes surrounding amyloid plaques in the brains of aged APP/PS1 and APPsw mice, and increased MMP activity was selectively observed in compact ThS-positive plaques. These findings suggest that MMP-9 can degrade fAbeta and may contribute to ongoing clearance of plaques from amyloid-laden brains.  相似文献   
43.
The chloride channel calcium-activated (CLCA) family are secreted proteins that regulate both chloride transport and mucin expression, thus controlling the production of mucus in respiratory and other systems. Accordingly, human CLCA1 is a critical mediator of hypersecretory lung diseases, such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis, that manifest mucus obstruction. Despite relevance to homeostasis and disease, the mechanism of CLCA1 function remains largely undefined. We address this void by showing that CLCA proteins contain a consensus proteolytic cleavage site recognized by a novel zincin metalloprotease domain located within the N terminus of CLCA itself. CLCA1 mutations that inhibit self-cleavage prevent activation of calcium-activated chloride channel (CaCC)-mediated chloride transport. CaCC activation requires cleavage to unmask the N-terminal fragment of CLCA1, which can independently gate CaCCs. Gating of CaCCs mediated by CLCA1 does not appear to involve proteolytic cleavage of the channel because a mutant N-terminal fragment deficient in proteolytic activity is able to induce currents comparable with that of the native fragment. These data provide both a mechanistic basis for CLCA1 self-cleavage and a novel mechanism for regulation of chloride channel activity specific to the mucosal interface.  相似文献   
44.
Recently, a Sendai virus (SeV) model of chronic obstructive lung disease has demonstrated an innate immune response in mouse airways that exhibits similarities to the chronic airway inflammation in human chronic obstructive pulmonary disease (COPD) and asthma, but the effect on distal lung parenchyma has not been investigated. The aim of our study is to image the time course and regional distribution of mouse lung microstructural changes in vivo after SeV infection. (1)H and (3)He diffusion magnetic resonance imaging (MRI) were successfully performed on five groups of C57BL/6J mice. (1)H MR images provided precise anatomical localization and lung volume measurements. (3)He lung morphometry was implemented to image and quantify mouse lung geometric microstructural parameters at different time points after SeV infection. (1)H MR images detected the SeV-induced pulmonary inflammation in vivo; spatially resolved maps of acinar airway radius R, alveolar depth h, and mean linear intercept Lm were generated from (3)He diffusion images. The morphometric parameters R and Lm in the infected group were indistinguishable from PBS-treated mice at day 21, increased slightly at day 49, and were increased with statistical significance at day 77 (p = 0.02). Increases in R and Lm of infected mice imply that there is a modest increase in alveolar duct radius distal to airway inflammation, particularly in the lung periphery, indicating airspace enlargement after virus infection. Our results indicate that (3)He lung morphometry has good sensitivity in quantifying small microstructural changes in the mouse lung and that the Sendai mouse model has the potential to be a valid murine model of COPD.  相似文献   
45.
Aggregation of the microtubule associated protein Tau is associated with several neurodegenerative disorders, including Alzheimer disease and frontotemporal dementia. In Alzheimer disease, Tau pathology spreads progressively throughout the brain, possibly along existing neural networks. However, it is still unclear how the propagation of Tau misfolding occurs. Intriguingly, in animal models, vaccine-based therapies have reduced Tau and synuclein pathology by uncertain mechanisms, given that these proteins are intracellular. We have previously speculated that trans-cellular propagation of misfolding could be mediated by a process similar to prion pathogenesis, in which fibrillar Tau aggregates spread pathology from cell to cell. However, there has been little evidence to demonstrate true trans-cellular propagation of Tau misfolding, in which Tau aggregates from one cell directly contact Tau protein in the recipient cell to trigger further aggregation. Here we have observed that intracellular Tau fibrils are directly released into the medium and then taken up by co-cultured cells. Internalized Tau aggregates induce fibrillization of intracellular Tau in these naive recipient cells via direct protein-protein contact that we demonstrate using FRET. Tau aggregation can be amplified across several generations of cells. An anti-Tau monoclonal antibody blocks Tau aggregate propagation by trapping fibrils in the extracellular space and preventing their uptake. Thus, propagation of Tau protein misfolding among cells can be mediated by release and subsequent uptake of fibrils that directly contact native protein in recipient cells. These results support the model of aggregate propagation by templated conformational change and suggest a mechanism for vaccine-based therapies in neurodegenerative diseases.  相似文献   
46.
Accumulation of the amyloid β (Aβ) peptide within the brain is hypothesized to be one of the main causes underlying the pathogenic events that occur in Alzheimer disease (AD). Consequently, identifying pathways by which Aβ is cleared from the brain is crucial for better understanding of the disease pathogenesis and developing novel therapeutics. Cellular uptake and degradation by glial cells is one means by which Aβ may be cleared from the brain. In the current study, we demonstrate that modulating levels of the low-density lipoprotein receptor (LDLR), a cell surface receptor that regulates the amount of apolipoprotein E (apoE) in the brain, altered both the uptake and degradation of Aβ by astrocytes. Deletion of LDLR caused a decrease in Aβ uptake, whereas increasing LDLR levels significantly enhanced both the uptake and clearance of Aβ. Increasing LDLR levels also enhanced the cellular degradation of Aβ and facilitated the vesicular transport of Aβ to lysosomes. Despite the fact that LDLR regulated the uptake of apoE by astrocytes, we found that the effect of LDLR on Aβ uptake and clearance occurred in the absence of apoE. Finally, we provide evidence that Aβ can directly bind to LDLR, suggesting that an interaction between LDLR and Aβ could be responsible for LDLR-mediated Aβ uptake. Therefore, these results identify LDLR as a receptor that mediates Aβ uptake and clearance by astrocytes, and provide evidence that increasing glial LDLR levels may promote Aβ degradation within the brain.  相似文献   
47.
The role of innate immunity in the pathogenesis of asthma is unclear. Although increased presence of neutrophils is associated with persistent asthma and asthma exacerbations, how neutrophils participate in the pathogenesis of asthma remains controversial. In this study, we show that the absence of dipeptidyl peptidase I (DPPI), a lysosomal cysteine protease found in neutrophils, dampens the acute inflammatory response and the subsequent mucous cell metaplasia that accompanies the asthma phenotype induced by Sendai virus infection. This attenuated phenotype is accompanied by a significant decrease in the accumulation of neutrophils and the local production of CXCL2, TNF, IL-1beta, and IL-6 in the lung of infected DPPI-/- mice. Adoptive transfer of DPPI-sufficient neutrophils into DPPI-/- mice restored the levels of CXCL2 and enhanced cytokine production on day 4 postinfection and subsequent mucous cell metaplasia on day 21 postinfection. These results indicate that DPPI and neutrophils play a critical role in Sendai virus-induced asthma phenotype as a result of a DPPI-dependent neutrophil recruitment and cytokine response.  相似文献   
48.
The epithelial surface is often proposed to actively participate in host defense, but evidence that this is the case remains circumstantial. Similarly, respiratory paramyxoviral infections are a leading cause of serious respiratory disease, but the basis for host defense against severe illness is uncertain. Here we use a common mouse paramyxovirus (Sendai virus) to show that a prominent early event in respiratory paramyxoviral infection is activation of the IFN-signaling protein Stat1 in airway epithelial cells. Furthermore, Stat1-/- mice developed illness that resembled severe paramyxoviral respiratory infection in humans and was characterized by increased viral replication and neutrophilic inflammation in concert with overproduction of TNF-alpha and neutrophil chemokine CXCL2. Poor control of viral replication as well as TNF-alpha and CXCL2 overproduction were both mimicked by infection of Stat1-/- airway epithelial cells in culture. TNF-alpha drives the CXCL2 response, because it can be reversed by TNF-alpha blockade in vitro and in vivo. These findings pointed to an epithelial defect in Stat1-/- mice. Indeed, we next demonstrated that Stat1-/- mice that were reconstituted with wild-type bone marrow were still susceptible to infection with Sendai virus, whereas wild-type mice that received Stat1-/- bone marrow retained resistance to infection. The susceptible epithelial Stat1-/- chimeric mice also exhibited increased viral replication as well as excessive neutrophils, CXCL2, and TNF-alpha in the airspace. These findings provide some of the most definitive evidence to date for the critical role of barrier epithelial cells in innate immunity to common pathogens, particularly in controlling viral replication.  相似文献   
49.
BACKGROUND: Hypoxic-ischemic (H-I) injury to the neonatal brain has been shown to result in rapid cell death with features of acute excitotoxicity/necrosis as well as prominent delayed cell death with features of apoptosis such as marked caspase-3 activation. BAX, a pro-apoptotic molecule, has been shown to be required for apoptotic neuronal cell death during normal development but the contribution of endogenous BAX in cell death pathways following H-I injury to the developing or adult brain has not been studied. MATERIALS AND METHODS: Bax +/+, +/-, and -/- mice at post-natal day 7 were subjected to unilateral carotid ligation followed by exposure to 45 minutes of 8% oxygen. At different timepoints following H-I, brain tissue was studied by conventional histology, immunohistochemistry, immunofluorescence, Western blotting, and enzymatic assay to determine the extent and type of cell injury as well as the amount of caspase activation. RESULTS: We found that bax -/- mice had significantly less (38%) hippocampal tissue loss than mice expressing bax. Some of the remaining cell death in bax -/- mice, however, still had features of apoptosis including evidence of nuclear shrinkage and caspase-3 activation. Though bax -/- mice had significantly decreased caspase-3 activation as compared to bax expressing mice following H-I, the density of cells with activated caspase-8 in the CA3 region of the hippocampus did not differ between bax +/- and bax -/- mice. CONCLUSIONS: These findings demonstrate that endogenous BAX plays a role in regulating cell death in the central nervous system (CNS) following neonatal H-I, a model of cerebral palsy. In addition, while BAX appears to modulate the caspase-3 activation following neonatal H-I, caspase-8 which is linked to death receptor activation, may contribute to apoptotic-like neuronal death in a BAX-independent manner.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号