全文获取类型
收费全文 | 172篇 |
免费 | 25篇 |
国内免费 | 2篇 |
专业分类
199篇 |
出版年
2022年 | 3篇 |
2020年 | 3篇 |
2019年 | 3篇 |
2018年 | 2篇 |
2017年 | 3篇 |
2016年 | 6篇 |
2015年 | 9篇 |
2014年 | 7篇 |
2013年 | 10篇 |
2012年 | 6篇 |
2011年 | 5篇 |
2010年 | 7篇 |
2009年 | 6篇 |
2008年 | 6篇 |
2007年 | 9篇 |
2006年 | 6篇 |
2005年 | 9篇 |
2004年 | 9篇 |
2003年 | 6篇 |
2002年 | 4篇 |
2001年 | 5篇 |
2000年 | 3篇 |
1999年 | 2篇 |
1998年 | 5篇 |
1997年 | 3篇 |
1995年 | 3篇 |
1994年 | 2篇 |
1993年 | 3篇 |
1992年 | 3篇 |
1991年 | 3篇 |
1989年 | 5篇 |
1988年 | 3篇 |
1987年 | 4篇 |
1983年 | 2篇 |
1982年 | 2篇 |
1977年 | 3篇 |
1976年 | 3篇 |
1974年 | 3篇 |
1971年 | 1篇 |
1970年 | 3篇 |
1969年 | 1篇 |
1967年 | 2篇 |
1966年 | 1篇 |
1962年 | 1篇 |
1960年 | 2篇 |
1958年 | 1篇 |
1955年 | 1篇 |
1953年 | 1篇 |
1934年 | 1篇 |
1929年 | 1篇 |
排序方式: 共有199条查询结果,搜索用时 15 毫秒
31.
32.
33.
The major lipids in Cyanidium caldarium Geitler are monogalactosyl diglyceride, digalactosyl diglyceride, plant sulfolipid, lecithin, phosphatidyl glycerol, phosphatidyl inositol, and phosphatidyl ethanolamine. Fatty acid composition varies appreciably among the lipids, but the major ones are palmitic acid, oleic acid, linoleic acid, and moderate amounts of stearic acid. Trace amounts of other acids in the C14 to C20 range were also present. Moderate amounts of linolenic acid were found in two strains, but not in a third. The proportion of saturated acid is relatively high in all lipids ranging from about a third in monogalactosyl diglyceride to three-fourths in sulfolipid. This may be a result of the high growth temperature. Lipases forming lysosulfolipid, and lysophosphatidyl glycerol are active in ruptured cells; galactolipid is degraded with loss of both acyl residues. Thus the lipid and fatty acid composition of Cyanidium more closely resembles that of green algae than that of the blue-green algae, although there are differences of possible phylogenetic interest. 相似文献
34.
The apple rootstock,A106(Malus sieboldii),had 17 bivalents in pollen mother cells at meiotic metaphase 1,and 17 chromosomes in a haploid pollen cell.Karyotypes were prepared from root-tip cells with 2n=34 chromosomes,Seven out of 82 karyotypes(8.5%) showed one pari of satellites at the end of the short arm of chromosome 3.C-bands were shown on 6 pairs of chromosomes 2,4,6,8,14,and 16 near the telomeric regions of short arms.Probes for three ripening-related genes from Malus x domestica:endopolygalacturonase(EPG,0.6kb),ACC oxidase(1.2kb),and ACC synthase(2kb)were hybridized in situ to metaphase chromosomes of A106.Hybridization sites for the EPG gene were observed on the long arm of chromosome 14 in 15 out of 16 replicate spreads and proximal to the centromere of chromosomes 6 and 11.For the ACC oxidase gene,hylridization sites were observed in the telomeric region of the short arm of chromosomes 5 and 11 in 87% and 81% of 16 spreads respectively,proxiaml to the centromere of chromosome 1 in 81% of the spreads,and on the long arm of chromosome 13 in 50% of the spreads. Physical mapping of three fruit ripening genes in an apple rootstock A106.Twenty five spreads were studied for the ACC synthase gene and hybridization sites were observed in the telomeric region of the short arm of chromosome 12 in 96% of the spreads.chromosomes 9 and 10 in 76% of the spreads,and chromosome 17 in 56% of the spreads. 相似文献
35.
36.
Isolated sensory neurons in vitro do not contain or synthesize S100, whereas glial cell precursor populations do. These precursor cells, when isolated from other cell types, produce low levels of S100 but never undergo the developmental transition to produce high levels of S100. When glial cell precursors are combined with isolated, live or paraformaldehyde-fixed sensory neurons, the precursor cells do undergo the second transition, and accumulate high levels of S100. Peroxidase-anti-peroxidase immunohistochemical staining for S100 confirms previous conclusions (B. Holton and J. A. Weston, 1982, Develop. Biol.89, 64–71) that only those glial cells which are closely apposed to neurons contain augmented levels of S100. This stimulation appears to be specific to neuronal/glial interactions since live or fixed fibroblasts, when cocultured with glial precursor cells, do not promote accumulation of S100 by the glial cells. 相似文献
37.
MATTHEW L. BUFFINGTON SEÁN G. BRADY SHELAH I. MORITA SIMON VAN NOORT 《Systematic Entomology》2012,37(2):287-304
We examine the phylogenetic relationships of Figitidae and discuss host use within this group in light of our own and previously published divergence time data. Our results suggest Figitidae, as currently defined, is not monophyletic. Furthermore, Mikeiinae and Pycnostigminae are sister‐groups, nested adjacent to Thrasorinae, Plectocynipinae and Euceroptrinae. The recovery of Pycnostigminae as sister‐group to Mikeiinae suggests two major patterns of evolution: (i) early Figitidae lineages demonstrate a Gondawanan origin (Plectocynipinae: Neotropical; Mikeiinae and Thrasorinae: Australia; Pycnostigminae: Africa); and (ii) based on host records for Mikeiinae, Thrasorinae and Plectocynipinae, Pycnostigminae are predicted to be parasitic on gall‐inducing Hymenoptera. The phylogenetic position of Parnips (Parnipinae) was unstable, and various analyses were conducted to determine the impact of this uncertainty on both the recovery of other clades and inferred divergence times; when Parnips was excluded from the total evidence analysis, Cynipidae was found to be sister‐group to [Euceroptrinae + (Plectocynipinae (Thrasorinae + (Mikeiinae + Pycnostigminae)))], with low support. Divergence dating analyses using BEAST indicate the stem‐group node of Figitidae to be c. 126 Ma; the dipteran parasitoids (Eucoilinae and Figitinae), were estimated to have a median age of 80 and 88 Ma, respectively; the neuropteran parasitoids (Anacharitinae), were estimated to have a median age of 97 Ma; sternorrhynchan hyperparasitoids (Charipinae), were estimated to have a median age of 110 Ma; the Hymenoptera‐parasitic subfamilies (Euceroptinae, Plectocynipinae, Trasorinae, Mikeiinae, Pycnostigminae, and Parnipinae), ranged in median ages from 48 to 108 Ma. Rapid radiation of Eucoilinae subclades appears chronologically synchronized with the origin of their hosts, Schizophora (Diptera). Overall, the exclusion of Parnips from the BEAST analysis did not result in significant changes to divergence estimates. Finally, though sparsely represented in the analysis, our data suggest Cynipidae have a median age of 54 Ma, which is somewhat older than the age of Quercus spp (30–50 Ma), their most common host. 相似文献
38.
Prenatal maternal psychological distress increases risk for adverse infant outcomes. However, the biological mechanisms underlying this association remain unclear. Prenatal stress can impact fetal epigenetic regulation that could underlie changes in infant stress responses. It has been suggested that maternal glucocorticoids may mediate this epigenetic effect. We examined this hypothesis by determining the impact of maternal cortisol and depressive symptoms during pregnancy on infant NR3C1 and BDNF DNA methylation. Fifty-seven pregnant women were recruited during the second or third trimester. Participants self-reported depressive symptoms and salivary cortisol samples were collected diurnally and in response to a stressor. Buccal swabs for DNA extraction and DNA methylation analysis were collected from each infant at 2 months of age, and mothers were assessed for postnatal depressive symptoms. Prenatal depressive symptoms significantly predicted increased NR3C1 1F DNA methylation in male infants (β = 2.147, P = 0.044). Prenatal depressive symptoms also significantly predicted decreased BDNF IV DNA methylation in both male and female infants (β = −3.244, P = 0.013). No measure of maternal cortisol during pregnancy predicted infant NR3C1 1F or BDNF promoter IV DNA methylation. Our findings highlight the susceptibility of males to changes in NR3C1 DNA methylation and present novel evidence for altered BDNF IV DNA methylation in response to maternal depression during pregnancy. The lack of association between maternal cortisol and infant DNA methylation suggests that effects of maternal depression may not be mediated directly by glucocorticoids. Future studies should consider other potential mediating mechanisms in the link between maternal mood and infant outcomes. 相似文献
39.
Abstract. We investigated the phylogeny and taxonomy of the Prenolepis genus‐group, a clade of ants we define within the subfamily Formicinae comprising the genera Euprenolepis, Nylanderia, gen. rev. , Paraparatrechina, gen. rev. & stat. nov. , Paratrechina, Prenolepis and Pseudolasius. We inferred a phylogeny of the Prenolepis genus‐group using DNA sequence data from five genes (CAD, EF1αF1, EF1αF2, wingless and COI) sampled from 50 taxa. Based on the results of this phylogeny the taxonomy of the Prenolepis genus‐group was re‐examined. Paratrechina (broad sense) species segregated into three distinct, robust clades. Paratrechina longicornis represents a distinct lineage, a result consistent with morphological evidence; because this is the type species for the genus, Paratrechina is redefined as a monotypic genus. Two formerly synonymized subgenera, Nylanderia and Paraparatrechina, are raised to generic status in order to provide names for the other two clades. The majority of taxa formerly placed in Paratrechina, 133 species and subspecies, are transferred to Nylanderia, and 28 species and subspecies are transferred to Paraparatrechina. In addition, two species are transferred from Pseudolasius to Paraparatrechina and one species of Pseudolasius is transferred to Nylanderia. A morphological diagnosis for the worker caste of all six genera is provided, with a discussion of the morphological characters used to define each genus. Two genera, Prenolepis and Pseudolasius, were not recovered as monophyletic by the molecular data, and the implications of this result are discussed. A worker‐based key to the genera of the Prenolepis genus‐group is provided. 相似文献
40.