首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131篇
  免费   20篇
  2021年   1篇
  2020年   3篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   6篇
  2015年   5篇
  2014年   6篇
  2013年   8篇
  2012年   3篇
  2011年   5篇
  2010年   6篇
  2009年   4篇
  2008年   5篇
  2007年   9篇
  2006年   4篇
  2005年   8篇
  2004年   6篇
  2003年   6篇
  2002年   2篇
  2001年   5篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
  1989年   5篇
  1988年   3篇
  1987年   3篇
  1983年   2篇
  1982年   1篇
  1977年   1篇
  1976年   2篇
  1974年   2篇
  1973年   1篇
  1971年   1篇
  1970年   3篇
  1969年   1篇
  1967年   2篇
  1966年   1篇
  1962年   1篇
  1960年   2篇
  1958年   1篇
  1955年   1篇
  1953年   1篇
排序方式: 共有151条查询结果,搜索用时 62 毫秒
61.
Following our identification of PTEN-induced putative kinase 1 (PINK1) gene mutations in PARK6-linked Parkinson's disease (PD), we have recently reported that PINK1 protein localizes to Lewy bodies (LBs) in PD brains. We have used a cellular model system of LBs, namely induction of aggresomes, to determine how a mitochondrial protein, such as PINK1, can localize to aggregates. Using specific polyclonal antibodies, we firstly demonstrated that human PINK1 was cleaved and localized to mitochondria. We demonstrated that, on proteasome inhibition with MG-132, PINK1 and other mitochondrial proteins localized to aggresomes. Ultrastructural studies revealed that the mechanism was linked to the recruitment of intact mitochondria to the aggresome. Fractionation studies of lysates showed that PINK1 cleavage was enhanced by proteasomal stress in vitro and correlated with increased expression of the processed PINK1 protein in PD brain. These observations provide valuable insights into the mechanisms of LB formation in PD that should lead to a better understanding of PD pathogenesis.  相似文献   
62.

Background

Somatic hypermutation introduces base substitutions into the rearranged and expressed immunoglobulin (Ig) variable regions to promote immunity. This pathway requires and is initiated by the Activation Induced Deaminase (AID) protein, which deaminates cytidine to produce uracils and UG mismatches at the Ig genes. Subsequent processing of uracil by mismatch repair and base excision repair factors contributes to mutagenesis. While selective for certain genomic targets, the chromatin modifications which distinguish hypermutating from non-hypermutating loci are not defined.

Methodology/Principal Findings

Here, we show that AID-targeted loci in mammalian B cells contain ubiquitinated chromatin. Chromatin immunoprecipitation (ChIP) analysis of a constitutively hypermutating Burkitt''s B cell line, Ramos, revealed the presence of monoubiquitinated forms of both histone H2A and H2B at two AID-associated loci, but not at control loci which are expressed but not hypermutated. Similar analysis using LPS activated primary murine splenocytes showed enrichment of the expressed VH and Sγ3 switch regions upon ChIP with antibody specific to AID and to monoubiquitinated H2A and H2B. In the mechanism of mammalian hypermutation, AID may interact with ubiquitinated chromatin because confocal immunofluorescence microscopy visualized AID colocalized with monoubiquitinated H2B within discrete nuclear foci.

Conclusions/Significance

Our results indicate that monoubiquitinated histones accompany active somatic hypermutation, revealing part of the histone code marking AID-targeted loci. This expands the current view of the chromatin state during hypermutation by identifying a specific nucleosome architecture associated with somatic hypermutation.  相似文献   
63.
The expression of heteroligomeric protein complexes for structural studies often requires a special coexpression strategy. The reason is that the solubility and proper folding of each subunit of the complex requires physical association with other subunits of the complex. The genomes of pathogenic mycobacteria encode many small protein complexes, implicated in bacterial fitness and pathogenicity, whose characterization may be further complicated by insolubility upon expression in Escherichia coli, the most common heterologous protein expression host. As protein fusions have been shown to dramatically affect the solubility of the proteins to which they are fused, we evaluated the ability of maltose binding protein fusions to produce mycobacterial Esx protein complexes. A single plasmid expression strategy using an N-terminal maltose binding protein fusion to the CFP-10 homolog proved effective in producing soluble Esx protein complexes, as determined by a small-scale expression and affinity purification screen, and coupled with intracellular proteolytic cleavage of the maltose binding protein moiety produced protein complexes of sufficient purity for structural studies. In comparison, the expression of complexes with hexahistidine affinity tags alone on the CFP-10 subunits failed to express in amounts sufficient for biochemical characterization. Using this strategy, six mycobacterial Esx complexes were expressed, purified to homogeneity, and subjected to crystallization screening and the crystal structures of the Mycobacterium abscessus EsxEF, M. smegmatis EsxGH, and M. tuberculosis EsxOP complexes were determined. Maltose binding protein fusions are thus an effective method for production of Esx complexes and this strategy may be applicable for production of other protein complexes.  相似文献   
64.
The UEV domain of the TSG101 protein functions in both HIV-1 budding and the vacuolar protein sorting (VPS) pathway, where it binds ubiquitylated proteins as they are sorted into vesicles that bud into late endosomal compartments called multivesicular bodies (MVBs). TSG101 UEV-ubiquitin interactions are therefore important for delivery of both substrates and hydrolytic enzymes to lysosomes, which receive proteins via fusion with MVBs. Here, we report the crystal structure of the TSG101 UEV domain in complex with ubiquitin at 2.0 A resolution. TSG101 UEV contacts the Ile44 surface and an adjacent loop of ubiquitin through a highly solvated interface. Mutations that disrupt the interface inhibit MVB sorting, and the structure also explains how the TSG101 UEV can independently bind its ubiquitin and Pro-Thr/Ser-Ala-Pro peptide ligands. Remarkably, comparison with mapping data from other UEV and related E2 proteins indicates that although the different E2/UEV domains share the same structure and have conserved ubiquitin binding activity, they bind through very different interfaces.  相似文献   
65.
Recognition of pathogen-associated molecular patterns (PAMPs) by surface-localized pattern recognition receptors (PRRs) constitutes an important layer of innate immunity in plants. The leucine-rich repeat (LRR) receptor kinases EF-TU RECEPTOR (EFR) and FLAGELLIN SENSING2 (FLS2) are the PRRs for the peptide PAMPs elf18 and flg22, which are derived from bacterial EF-Tu and flagellin, respectively. Using coimmunoprecipitation and mass spectrometry analyses, we demonstrated that EFR and FLS2 undergo ligand-induced heteromerization in planta with several LRR receptor-like kinases that belong to the SOMATIC-EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) family, including BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1/SERK3 (BAK1/SERK3) and BAK1-LIKE1/SERK4 (BKK1/SERK4). Using a novel bak1 allele that does not exhibit pleiotropic defects in brassinosteroid and cell death responses, we determined that BAK1 and BKK1 cooperate genetically to achieve full signaling capability in response to elf18 and flg22 and to the damage-associated molecular pattern AtPep1. Furthermore, we demonstrated that BAK1 and BKK1 contribute to disease resistance against the hemibiotrophic bacterium Pseudomonas syringae and the obligate biotrophic oomycete Hyaloperonospora arabidopsidis. Our work reveals that the establishment of PAMP-triggered immunity (PTI) relies on the rapid ligand-induced recruitment of multiple SERKs within PRR complexes and provides insight into the early PTI signaling events underlying this important layer of plant innate immunity.  相似文献   
66.
67.
68.
69.
70.
The growing availability of EST sequences from a range of crop plantsprovides a potentially valuable source of new DNA markers. We have examined theInternational Triticeae EST Cooperative database for the presence ofdinucleotide and trinucleotide simple sequence repeats. Analysis of 24,344 ESTsidentified 388 dinucleotide repeats and 978 trinucleotide repeats in ESTs,representing 1.6% and 4.0% of the total number of ESTs, respectively. To testthe utility and cross-species transferability of EST-derived SSR markers,primers were designed to the flanking regions of 41 barley SSRs and used toscreen 11 barley and 15 wheat varieties. Sixteen of the barley SSR markers werepolymorphic in barley and five were polymorphic in wheat. This represents arelatively high level of transferability of SSR markers between barley andwheat, which has important implications for the development of new markers andcomparative mapping of barley, wheat and other cereals. An additional 56 SSRsfrom wheat ESTs were tested in the same barley and wheat varieties. Four wheatEST SSR markers were polymorphic in wheat and one in barley. Chromosomallocations in barley and wheat were determined for the majority of polymorphicmarkers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号