首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   969篇
  免费   53篇
  2023年   3篇
  2021年   4篇
  2019年   3篇
  2018年   9篇
  2017年   5篇
  2016年   18篇
  2015年   33篇
  2014年   25篇
  2013年   47篇
  2012年   43篇
  2011年   50篇
  2010年   52篇
  2009年   40篇
  2008年   49篇
  2007年   53篇
  2006年   41篇
  2005年   33篇
  2004年   43篇
  2003年   31篇
  2002年   36篇
  2001年   35篇
  2000年   35篇
  1999年   23篇
  1998年   18篇
  1997年   22篇
  1996年   14篇
  1995年   13篇
  1994年   11篇
  1993年   15篇
  1992年   12篇
  1991年   15篇
  1990年   10篇
  1989年   14篇
  1988年   16篇
  1987年   8篇
  1986年   6篇
  1985年   16篇
  1984年   9篇
  1983年   8篇
  1982年   21篇
  1981年   10篇
  1980年   4篇
  1979年   5篇
  1978年   3篇
  1977年   10篇
  1976年   6篇
  1975年   11篇
  1972年   6篇
  1971年   5篇
  1934年   3篇
排序方式: 共有1022条查询结果,搜索用时 46 毫秒
41.
The signal produced by fluorescence in situ hybridization (FISH) often is inconsistent among cells and sensitivity is low. Small DNA targets on the chromatin are difficult to detect. We report here an improved nick translation procedure for Texas red and Alexa Fluor 488 direct labeling of FISH probes. Brighter probes can be obtained by adding excess DNA polymerase I. Using such probes, a 30?kb yeast transgene, and the rp1, rp3 and zein multigene clusters were clearly detected.  相似文献   
42.
Structure–function studies are frequently practiced on the very diverse group of natural carbohydrate-binding modules in order to understand the target recognition of these proteins. We have taken a step further in the study of carbohydrate-binding modules and created variants with novel binding properties by molecular engineering of one such molecule of known 3D-structure. A combinatorial library was created from the sequence encoding a thermostable carbohydrate-binding module, CBM4-2 from a Rhodothermus marinus xylanase, and the phage-display technology was successfully used for selection of variants with specificity towards different carbohydrate polymers (birchwood xylan, Avicel?, ivory nut mannan and recently also xyloglucan), as well as towards a glycoprotein (human IgG4). Our work not only generated a number of binders with properties that would suite a range of biotechnological applications, but analysis the selected binders also helped us to identify residues important for their specificities.  相似文献   
43.
Conventionally, an allosteric modulator is neutral in respect of efficacy and binds to a receptor site distant from the orthosteric site of the endogenous agonist. However, recently compounds being ago-allosteric modulators have been described i.e., compounds acting both as agonists on their own and as enhancers for the endogenous agonists in both increasing agonist potency and providing additive efficacy—superagonism. The additive efficacy can also be observed with agonists, which are neutral or even negative modulators of the potency of the endogenous ligand. Based on the prevailing dimeric concept for 7TM receptors, it is proposed that the ago-allosteric modulators bind in the orthosteric binding site, but–importantly–in the “other” or allosteric protomer of the dimer. Hereby, they can act both as additive co-agonists, and through intermolecular cooperative effects between the protomers, they may influence the potency of the endogenous agonist. It is of interest that at least some endogenous agonists can only occupy one protomer of a dimeric 7TM receptor complex at a time and thereby they leave the orthosteric binding site in the allosteric protomer free, potentially for binding of exogenous, allosteric modulators. If the allosteric modulator is an agonist, it is an ago-allosteric modulator; if it is neutral, it is a classical enhancer. Molecular mapping in hetero-dimeric class-C receptors, where the endogenous agonist clearly binds only in one protomer, supports the notion that allosteric modulators can act through binding in the “other” protomer. It is suggested that for the in vivo, clinical setting a positive ago-allosteric modulator should be the preferred agonist drug.  相似文献   
44.
Cancer is a leading cause of death and alterations of glycosylation are characteristic features of malignant cells. Colorectal cancer is one of the most common cancers and its exact causes and biology are not yet well understood. Here, we compared glycosylation profiles of colorectal tumor tissues and corresponding control tissues of 13 colorectal cancer patients to contribute to the understanding of this cancer. Using MALDI-TOF(/TOF)-MS and 2-dimensional LC-MS/MS we characterized enzymatically released and 2-aminobenzoic acid labeled glycans from glycosphingolipids. Multivariate data analysis revealed significant differences between tumor and corresponding control tissues. Main discriminators were obtained, which represent the overall alteration in glycosylation of glycosphingolipids during colorectal cancer progression, and these were found to be characterized by (1) increased fucosylation, (2) decreased acetylation, (3) decreased sulfation, (4) reduced expression of globo-type glycans, as well as (5) disialyl gangliosides. The findings of our current research confirm former reports, and in addition expand the knowledge of glycosphingolipid glycosylation in colorectal cancer by revealing new glycans with discriminative power and characteristic, cancer-associated glycosylation alterations. The obtained discriminating glycans can contribute to progress the discovery of biomarkers to improve diagnostics and patient treatment.Worldwide, cancer is a leading cause of death. With estimated 1.2 million diagnoses in 2008, colorectal cancer is the third most common cancer in the world and the fourth most common cause of death with an annual mortality of ∼600 000 (1). The exact causes of colorectal cancer are unknown, but different risk factors such as age, polyps, personal and family history, ulcerative colitis, or Crohn''s colitis have been proposed (2). Standard screening procedures include flexible sigmoidoscopy, colonoscopy, and immunological fecal occult blood testing. Each of them has its advantages and drawbacks such as invasiveness or low sensitivity and specificity (3). The method of choice for the treatment of colorectal cancer is surgery and therapeutic decisions are based on the tumor, lymph node, and metastasis staging-system as a prognostic factor (4). Current research has led to improved treatment strategies of colorectal cancer, however, the clinical outcome, the progression of the disease, and the response to the treatment remain variable among individuals. The heterogeneity of colorectal cancer at the molecular level—caused by accumulation of multiple genetic changes—may be one of the main reasons for this variability (5). Genetic factors such as instabilities, but also expression levels (6) can explain part of the cancer biology, but glycomics is gaining importance to complement the overall picture as aberrant glycosylation of proteins and lipids has been shown to be correlated with disease and malignancy (7, 8).Glycosylation is involved in many biological processes and especially its functional role in cellular interaction with respect to adhesion, cell growth, and signaling is prone to be affected in cancer progression, invasion, and metastasis (9). Several cancer-associated alterations in protein glycosylation have been reported: (1) increased branching of N-glycans, (2) higher density of O-glycans, and (3) incomplete synthesis of glycans. More particularly, an increased or induced expression of GlcNAc transferase V resulting in N-glycan structures with β1–6GlcNAc antennae (5, 10), and the expression of (sialyl) Tn-antigens (11) as aberrant O-glycosylation have been reported (10).Altered glycosphingolipid (GSL)1 glycosylation of the cell surface membrane during malignancy can affect cell recognition, adhesion, and signal transduction (12) and is found to reflect: (1) incomplete synthesis with or without precursor accumulation, (2) neosynthesis (9), (3) increased sialylation, and (4) increased fucosylation (13). In many cancers, including colorectal cancer, an overexpression of the (sialyl) Lewis X antigen (10, 14) and the expression of (sialyl) Lewis A (15) are considered to be related to malignant transformation—reflecting incomplete synthesis of sialyl 6-sulfo Lewis X and disialyl Lewis A (16) as well as neosynthesis (17). Studies on gangliosides showed an overexpression of these sialylated GSLs in human malignant melanoma (18). Furthermore, the involvement of gangliosides in cell adhesion and motility was reported, which contributes to tumor metastasis (19). Specifically, the gangliosides GD3 (Hex2NeuAc2ceramide) and GM2 (Hex2HexNAc1NeuAc1ceramide) have been found to be associated with tumor-angiogenesis (19). The up-regulation of fucosyltransferases in cancer was shown to cause a higher degree of fucosylation in malignant tissues (20) and Moriwaki et al. proposed that the increase in the fucosylation for GSLs was an early event in cancer (21). Misonou et al. investigated glycans derived from GSLs in colorectal cancer tissues showing aberrant glycan structures based on linkage differences as well as increased sialylation and fucosylation compared with control tissue (22), which is in line with observed changes in GSL glycosylation with regard to cancer progression (9, 13).Recently, we investigated the N-glycosylation profiles of colorectal tumors and correlating control tissues for biomarker discovery. Statistical analyses revealed an increase of sulfated glycan structures as well as paucimannosidic glycans and glycans containing sialylated Lewis type epitopes in the tumor tissue, whereas structures with bisecting GlcNAc were found to be decreased in malignancy (23). To further progress the understanding of colorectal cancer biology and the improvement of diagnostic tools and patient treatment, we complemented this recent study on N-glycosylation by an investigation of the glycosphingolipid-derived glycans (named GSL-glycans in the following) from frozen tumor tissues and corresponding control tissues from the same 13 colorectal cancer patients. GSL-glycans were enzymatically released, labeled with 2-aminobenzoic acid (AA) and analyzed by hydrophilic interaction liquid chromatography (HILIC) with fluorescence detection as well as matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Employing multivariate statistical analysis, this approach revealed an intricate GSL-glycosylation pattern of tumor tissues and specific glycosylation differences in comparison to the corresponding control tissue.  相似文献   
45.
46.
The Guayana Highlands (GH) constitute a highly diverse, but relatively poorly studied Neotropical biome, comprised of ~50 flat-topped mountain summits (called tepuis). Previous studies based on warming forecasts for the region suggested that an upward displacement of environmental conditions of 500–700 m could occur by 2100, potentially resulting in the extinction of c. 50% of its endemic flora due to total habitat loss. To assess the ecological responses of the species to climate change, and select the appropriate conservation measures, long-term monitoring of the GH plant communities will be necessary. In this study, the baseline state for future comparisons was established for the best explored tepui in terms of its flora, Roraima-tepui (2810 m), through a floristic characterization of its different vegetation types. We also identified the environmental gradients underlying the major plant communities, and assessed the effects of human activities on the chemistry of soils and water at three field camps. Our results yielded five main community types: three meadows, one shrubland, and one forest, with their corresponding diagnostic species. The herbaceous communities were mainly influenced by the presence of flat sandy soils, with varying flooding capacity. Shrublands and forests were characterized by irregular organic soils with very low pH. Finally, pH values below 3 were measured on an organic soil of a field camp, although further studies will be necessary to attribute this deviation to human activities.  相似文献   
47.
Freidman  Natasha  Chen  Ichia  Wu  Qianyi  Briot  Chelsea  Holst  Jeff  Font  Josep  Vandenberg  Robert  Ryan  Renae 《Neurochemical research》2020,45(6):1268-1286

The Solute Carrier 1A (SLC1A) family includes two major mammalian transport systems—the alanine serine cysteine transporters (ASCT1-2) and the human glutamate transporters otherwise known as the excitatory amino acid transporters (EAAT1-5). The EAATs play a critical role in maintaining low synaptic concentrations of the major excitatory neurotransmitter glutamate, and hence they have been widely researched over a number of years. More recently, the neutral amino acid exchanger, ASCT2 has garnered attention for its important role in cancer biology and potential as a molecular target for cancer therapy. The nature of this role is still being explored, and several classes of ASCT2 inhibitors have been developed. However none have reached sufficient potency or selectivity for clinical use. Despite their distinct functions in biology, the members of the SLC1A family display structural and functional similarity. Since 2004, available structures of the archaeal homologues GltPh and GltTk have elucidated mechanisms of transport and inhibition common to the family. The recent determination of EAAT1 and ASCT2 structures may be of assistance in future efforts to design efficacious ASCT2 inhibitors. This review will focus on ASCT2, the present state of knowledge on its roles in tumour biology, and how structural biology is being used to progress the development of inhibitors.

  相似文献   
48.

Background

Prostasomes are extracellular vesicles. Intracellularly they are enclosed by another larger vesicle, a so called “storage vesicle” equivalent to a multivesicular body of late endosomal origin. Prostasomes in their extracellular context are thought to play a crucial role in fertilization.

Methods

Prostasomes were purified according to a well worked-out schedule from seminal plasmas obtained from human, canine, equine and bovine species. The various prostasomes were subjected to SDS-PAGE separation and protein banding patterns were compared. To gain knowledge of the prostasomal protein systems pertaining to prostasomes of four different species proteins were analyzed using a proteomic approach. An in vitro assay was employed to demonstrate ATP formation by prostasomes of different species.

Results

The SDS-PAGE banding pattern of prostasomes from the four species revealed a richly faceted picture with most protein bands within the molecular weight range of 10–150 kDa. Some protein bands seemed to be concordant among species although differently expressed and the number of protein bands of dog prostasomes seemed to be distinctly fewer. Special emphasis was put on proteins involved in energy metabolic turnover. Prostasomes from all four species were able to form extracellular adenosine triphosphate (ATP). ATP formation was balanced by ATPase activity linked to the four types of prostasomes.

Conclusion

These potencies of a possession of functional ATP-forming enzymes by different prostasome types should be regarded against the knowledge of ATP having a profound effect on cell responses and now explicitly on the success of the sperm cell to fertilize the ovum.

General significance

This study unravels energy metabolic relationships of prostasomes from four different species.  相似文献   
49.
The molecular integrity of the active site of phytases from fungi is critical for maintaining phytase function as efficient catalytic machines. In this study, the molecular dynamics (MD) of two monomers of phytase B from Aspergillus niger, the disulfide intact monomer (NAP) and a monomer with broken disulfide bonds (RAP), were simulated to explore the conformational basis of the loss of catalytic activity when disulfide bonds are broken. The simulations indicated that the overall secondary and tertiary structures of the two monomers were nearly identical but differed in some crucial secondary–structural elements in the vicinity of the disulfide bonds and catalytic site. Disulfide bonds stabilize the β-sheet that contains residue Arg66 of the active site and destabilize the α-helix that contains the catalytic residue Asp319. This stabilization and destabilization lead to changes in the shape of the active–site pocket. Functionally important hydrogen bonds and atomic fluctuations in the catalytic pocket change during the RAP simulation. None of the disulfide bonds are in or near the catalytic pocket but are most likely essential for maintaining the native conformation of the catalytic site.

Abbreviations

PhyB - 2.5 pH acid phophatese from Aspergillus niger, NAP - disulphide intact monomer of Phytase B, RAP - disulphide reduced monomer of Phytase B, Rg - radius of gyration, RMSD - root mean square deviation, MD - molecular dynamics.  相似文献   
50.

Background:

Vascular growth is a prerequisite for adipose tissue (AT) development and expansion. Some AT cytokines and hormones have effects on vascular development, like vascular endothelial growth factor (VEGF‐A), angiopoietin (ANG‐1), ANG‐2 and angiopoietin‐like protein‐4 (ANGPTL‐4).

Methods:

In this study, the independent and combined effects of diet‐induced weight loss and exercise on AT gene expression and proteins levels of those angiogenic factors were investigated. Seventy‐nine obese males and females were randomized to: 1. Exercise‐only (EXO; 12‐weeks exercise without diet‐restriction), 2. Hypocaloric diet (DIO; 8‐weeks very low energy diet (VLED) + 4‐weeks weight maintenance diet) and 3. Hypocaloric diet and exercise (DEX; 8‐weeks VLED + 4‐weeks weight maintenance diet combined with exercise throughout the 12 weeks). Blood samples and fat biopsies were taken before and after the intervention.

Results:

Weight loss was 3.5 kg in the EXO group and 12.3 kg in the DIO and DEX groups. VEGF‐A protein was non‐significantly reduced in the weight loss groups. ANG‐1 protein levels were significantly reduced 22‐25% after all three interventions (P < 0.01). The ANG‐1/ANG‐2 ratio was also decreased in all three groups (P < 0.05) by 27‐38%. ANGPTL‐4 was increased in the EXO group (15%, P < 0.05) and 9% (P < 0.05) in the DIO group. VEGF‐A, ANG‐1, and ANGPTL‐4 were all expressed in human AT, but only ANGPTL‐4 was influenced by the interventions.

Conclusions:

Our data show that serum VEGF‐A, ANG‐1, ANG‐2, and ANGPTL‐4 levels are influenced by weight changes, indicating the involvement of these factors in the obese state. Moreover, it was found that weight loss generally was associated with a reduced angiogenic activity in the circulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号