首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   455篇
  免费   39篇
  494篇
  2020年   4篇
  2018年   6篇
  2016年   12篇
  2015年   19篇
  2014年   17篇
  2013年   13篇
  2012年   14篇
  2011年   10篇
  2010年   8篇
  2009年   8篇
  2008年   13篇
  2007年   13篇
  2006年   24篇
  2005年   10篇
  2004年   16篇
  2003年   14篇
  2002年   9篇
  2001年   10篇
  2000年   20篇
  1999年   6篇
  1998年   7篇
  1994年   5篇
  1993年   3篇
  1992年   11篇
  1991年   16篇
  1990年   9篇
  1989年   5篇
  1988年   5篇
  1987年   5篇
  1986年   9篇
  1985年   8篇
  1984年   5篇
  1983年   5篇
  1982年   6篇
  1981年   4篇
  1980年   8篇
  1979年   5篇
  1978年   5篇
  1976年   10篇
  1975年   8篇
  1974年   6篇
  1973年   7篇
  1972年   5篇
  1970年   5篇
  1969年   6篇
  1968年   6篇
  1965年   3篇
  1947年   4篇
  1923年   3篇
  1887年   3篇
排序方式: 共有494条查询结果,搜索用时 15 毫秒
51.
A novel peptide termed locustamyoinhibiting peptide (LOM-MIP) was isolated from brain-corpora cardiaca-corpora allata-suboesophageal ganglion extracts of the locust, Locusta migratoria. The primary structure of this nonapeptide has been determined Ala-Trp-Gln-Asp-Leu-Asn-Ala-Gly-Trp-NH2. LOM-MIP suppresses the spontaneous contractions of the hindgut and oviduct of Locusta migratoria and of the hindgut of Leucophaea maderae. This novel peptide is, however, structurally different from leucomyosuppressin, a hindgut suppressing peptide isolated from Leucophaea maderae heads. LOM-MIP has a Gly-TrpNH2 carboxy-terminal in common with APGWamide, a penis retractor muscle inhibiting peptide isolated from the snail, Lymnea stagnalis. In addition, it shows carboxy-terminal sequence similarities with locust AKH II which ends in AGWamide. No sequence similarities were found with other vertebrate or invertebrate peptides. Synthetic LOM-MIP showed biological as well as chemical characteristics indistinguishable from those of native LOM-MIP.  相似文献   
52.
Eusocial insects exhibit reproductive division of labour, in which one or a few queens perform almost all of the reproduction, while the workers are largely sterile and assist in rearing their siblings. Consequently, many of the colony’s tasks (e.g. nest construction and brood rearing) should be modulated depending on whether the queen is fertile. Here, we tested whether queens’ cuticular lipids could provide reliable signals of fertility in the honeybee Apis mellifera, as they do in other social Hymenoptera. Specifically, we tested whether cuticular lipids differ between virgin queens of different ages, and between queens exposed to different artificial insemination treatments being semen (sperm and seminal fluid), seminal fluid only or saline control. Using gas chromatography–mass spectrometry, we found 27 lipids: 21 different hydrocarbons, namely alkanes, alkenes and dienes, as well as six wax esters. The lipid profile changed dramatically in the first 10 days after eclosion, and there were differences in lipid composition between virgin and artificially inseminated queens. Insemination with semen, seminal fluid or saline did not result in distinct chemical profiles. Our findings indicate that the physical stimulus of insemination was responsible for the observed changes in the cuticular profile in honeybee queens. Our results demonstrate that cuticular lipid profiles encode information on queen age, fertility and mating status, which could in principle be utilised by workers and rival queens.  相似文献   
53.
54.
The chemical and structural organization of the plant cell wall was examined in Zinnia elegans tracheary elements (TEs), which specialize by developing prominent secondary wall thickenings underlying the primary wall during xylogenesis in vitro. Three imaging platforms were used in conjunction with chemical extraction of wall components to investigate the composition and structure of single Zinnia TEs. Using fluorescence microscopy with a green fluorescent protein-tagged Clostridium thermocellum family 3 carbohydrate-binding module specific for crystalline cellulose, we found that cellulose accessibility and binding in TEs increased significantly following an acidified chlorite treatment. Examination of chemical composition by synchrotron radiation-based Fourier-transform infrared spectromicroscopy indicated a loss of lignin and a modest loss of other polysaccharides in treated TEs. Atomic force microscopy was used to extensively characterize the topography of cell wall surfaces in TEs, revealing an outer granular matrix covering the underlying meshwork of cellulose fibrils. The internal organization of TEs was determined using secondary wall fragments generated by sonication. Atomic force microscopy revealed that the resulting rings, spirals, and reticulate structures were composed of fibrils arranged in parallel. Based on these combined results, we generated an architectural model of Zinnia TEs composed of three layers: an outermost granular layer, a middle primary wall composed of a meshwork of cellulose fibrils, and inner secondary wall thickenings containing parallel cellulose fibrils. In addition to insights in plant biology, studies using Zinnia TEs could prove especially productive in assessing cell wall responses to enzymatic and microbial degradation, thus aiding current efforts in lignocellulosic biofuel production.The organization and molecular architecture of plant cell walls represent some of the most challenging problems in plant biology. Although much is known about general aspects of assembly and biosynthesis of the plant cell wall, the detailed three-dimensional molecular cell wall structure remains poorly understood. The highly complex and dynamic nature of the plant cell wall has perhaps limited the generation of such detailed structural models. This information is pivotal for the successful implementation of novel approaches for conversion of biomass to liquid biofuels, given that one of the critical processing steps in biomass conversion involves systematic deconstruction of cell walls. Therefore, a comprehensive understanding of the architecture and chemical composition of the plant cell wall will not only help develop molecular-scale models, but will also help improve the efficiency of biomass deconstruction.The composition and molecular organization of the cell wall is species and cell type dependent (Vorwerk et al., 2004). Thus, the development of a model plant system, which utilizes a single cell type, has enhanced our capacity to understand cell wall architecture. The ability to generate a population of single Zinnia elegans plant cells that were synchronized throughout cell wall deposition during xylogenesis was developed in the 1980s (Fukuda and Komamine, 1980). Mesophyll cells isolated from the leaves of Zinnia and cultured in the presence of phytohormones will transdifferentiate into tracheary elements (TEs), which are individual components of the xylem vascular tissue (Fukuda and Komamine, 1980). During this transdifferentiation process, TEs gradually develop patterned secondary wall thickenings, commonly achieving annular, spiral, reticulate, scalariform, and pitted patterns (Bierhorst, 1960; Falconer and Seagull, 1988; Roberts and Haigler, 1994). These secondary wall thickenings serve as structural reinforcements that add strength and rigidity to prevent the collapse of the xylem under the high pressure created by fluid transport. During the final stages of transdifferentiation, TEs accumulate lignin in their secondary walls and undergo programmed cell death, which results in the removal of all cell contents, leaving behind a “functional corpse” (Roberts and McCann, 2000; Fukuda, 2004).In broad terms, the primary cell wall of higher plants is mainly composed of three types of polysaccharides: cellulose, hemicelluloses, and pectins (Cosgrove, 2005). Cellulose is composed of unbranched β-1,4-Glc chains that are packed together into fibrils by intermolecular and intramolecular hydrogen bonding. Hemicelluloses and pectins are groups of complex polysaccharides that are primarily composed of xyloglucans/xylans and galacturonans, respectively. Hemicelluloses are involved in cross-linking and associating with cellulose microfibrils, while pectins control wall porosity and help bind neighboring cells together. The patterned deposits of secondary wall in Zinnia TEs primarily consist of cellulose microfibrils, along with hemicelluloses, and also lignin, a complex aromatic polymer that is characteristic of secondary walls and provides reinforcement (Turner et al., 2007). All the molecular components in the cell wall correspond to a multitude of different polysaccharides, phenolic compounds, and proteins that become arranged and modified in muro, yielding a structure of great strength and resistance to degradation.Currently, electron microscopy is the primary tool for structural studies of cell walls and has provided remarkable information regarding wall organization. Fast-freeze deep-etch electron microscopy in combination with chemical and enzymatic approaches have generated recent models of the architecture of the primary wall (McCann et al., 1990; Carpita and Gibeaut, 1993; Nakashima et al., 1997; Fujino et al., 2000; Somerville et al., 2004). Direct visualization of secondary wall organization has been focused toward the examination of multiple wall layers in wood cells (Fahlen and Salmen, 2005; Zimmermann et al., 2006). However, few studies have examined the secondary wall, so our knowledge regarding the higher order architecture of this type of wall is limited. Over the past few decades, atomic force microscopy (AFM) has provided new opportunities to probe biological systems with spatial resolution similar to electron microscopy techniques (Kuznetsov et al., 1997; Muller et al., 1999), with additional ease of sample preparation and the capability to probe living native structures. AFM has been successfully applied to studies of the high-resolution architecture, assembly, and structural dynamics of a wide range of biological systems (Hoh et al., 1991; Crawford et al., 2001; Malkin et al., 2003; Plomp et al., 2007), thus enabling the observation of the ultrastructure of the plant cell wall, which is of particular interest to us (Kirby et al., 1996; Morris et al., 1997; Davies and Harris, 2003; Yan et al., 2004; Ding and Himmel, 2006).To generate more detailed structural models, knowledge about the structural organization of the cell wall can be combined with spatial information about chemical composition. Instead of utilizing chromatography techniques to analyze cell wall composition by extracting material from bulk plant samples (Mellerowicz et al., 2001; Pauly and Keegstra, 2008), Fourier transform infrared (FTIR) spectromicroscopy can be used to directly probe for polysaccharide and aromatic molecules in native as well as treated plant material (Carpita et al., 2001; McCann et al., 2001). FTIR spectromicroscopy is not only able to identify chemical components in a specific system but also can determine their distribution and relative abundance. This technique also improves the sensitivity and spatial resolution of cellular components without the derivatization needed by chemical analysis using chromatography. Polysaccharide-specific probes, such as carbohydrate-binding modules (CBMs), can also be used to understand the chemical composition of the plant cell wall. CBMs are noncatalytic protein domains existing in many glycoside hydrolases. Based on their binding specificities, CBMs are generally categorized into three groups: surface-binding CBMs specific for insoluble cellulose surfaces, chain-binding CBMs specific for single chains of polysaccharides, and end-binding CBMs specific for the ends of polysaccharides or oligosaccharides. A surface-binding CBM with high affinity for the planar faces of crystalline cellulose (Tormo et al., 1996; Lehtio et al., 2003) has been fluorescently labeled and used to label crystals as well as plant tissue (Ding et al., 2006; Porter et al., 2007; Liu et al., 2009; Xu et al., 2009). The binding capacity of the CBM family has been further exploited for the detection of different polysaccharides, such as xylans and glucans, and can thus be used for the characterization of plant cell wall composition (McCartney et al., 2004, 2006).In this study, we used a combination of AFM, synchrotron radiation-based (SR)-FTIR spectromicroscopy, and fluorescence microscopy using a cellulose-specific CBM to probe the cell wall of Zinnia TEs. The Zinnia TE culture system proved ideal for observing the structure and chemical composition of the cell wall because it comprises a single homogeneous cell type, representing a simpler system compared with plant tissues, which may contain multiple cell types. Zinnia TEs were also advantageous because they were analyzed individually, and population statistics were generated based on specific conditions. Furthermore, cultured Zinnia TEs were used for the consistent production of cell wall fragments for analysis of the organization of internal secondary wall structures. In summary, we have physically and chemically dissected Zinnia TEs using a combination of imaging techniques that revealed primary and secondary wall structures and enabled the reconstruction of TE cell wall architecture.  相似文献   
55.
Establishing a complete pathway which links occupancy of the insulin receptor to GLUT4 translocation has been particularly elusive because of the complexities involved in studying both signalling and membrane trafficking processes. However, Lienhard's group has now discovered two related molecules that could function in this linking role. These proteins, Tbc1d4 (also known as AS160) and now Tbc1d1, as reported in this issue of the Biochemical Journal, have been demonstrated to be Rab GAPs (GTPase-activating proteins) that link upstream to Akt (protein kinase B) and phosphoinositide 3-kinase and downstream to Rabs involved in trafficking of GLUT4 vesicles. The data from Leinhard and colleagues suggest that high levels of Rab GAP activity lead to suppression of GLUT4 translocation and this observation has wide significance and is likely to be relevant to the recent discovery that mutations in the Tbc1d1 gene lead to some cases of severe human obesity.  相似文献   
56.
BACKGROUND: Mammalian Diaphanous (mDia)-related formins and the N-WASP-activated Arp2/3 complex initiate the assembly of filamentous actin. Dia-interacting protein (DIP) binds via its amino-terminal SH3 domain to the proline-rich formin homology 1 (FH1) domain of mDia1 and mDia2 and to the N-WASp proline-rich region. RESULTS: Here, we investigated an interaction between a conserved leucine-rich region (LRR) in DIP and the mDia FH2 domain that nucleates, processively elongates, and bundles actin filaments. DIP binding to mDia2 was regulated by the same Rho-GTPase-controlled autoinhibitory mechanism modulating formin-mediated actin assembly. DIP was previously shown to interact with and stimulate N-WASp-dependent branched filament assembly via Arp2/3. Despite direct binding to both mDia1 and mDia2 FH2 domains, DIP LRR inhibited only mDia2-dependent filament assembly and bundling in vitro. DIP expression interfered with filopodia formation, consistent with a role for mDia2 in assembly of these structures. After filopodia retraction into the cell body, DIP expression induced excessive nonapoptotic membrane blebbing, a physiological process involved in both cytokinesis and amoeboid cell movement. DIP-induced blebbing was dependent on mDia2 but did not require the activities of either mDia1 or Arp2/3. CONCLUSIONS: These observations point to a pivotal role for DIP in the control of nonbranched and branched actin-filament assembly that is mediated by Diaphanous-related formins and activators of Arp2/3, respectively. The ability of DIP to trigger blebbing also suggests a role for mDia2 in the assembly of cortical actin necessary for maintaining plasma-membrane integrity.  相似文献   
57.
Extended periods of darkness have long been used to study how the mammalian visual system develops in the absence of any instruction from vision. Because of the relative ease of implementation of darkness as a means to eliminate visually driven neural activity, it has usually been imposed earlier in life and for much longer periods than was the case for other manipulations of the early visual input used for study of their influences on visual system development. Recently, it was shown that following a very brief (10 days) period of darkness imposed at five weeks of age, kittens emerged blind. Although vision as assessed by measurements of visual acuity eventually recovered, the time course was very slow as it took seven weeks for visual acuity to attain normal levels. Here, we document the critical period of this remarkable vulnerability to the effects of short periods of darkness by imposing 10 days of darkness on nine normal kittens at progressively later ages. Results indicate that the period of susceptibility to darkness extends only to about 10 weeks of age, which is substantially shorter than the critical period for the effects of monocular deprivation in the primary visual cortex, which extends beyond six months of age.  相似文献   
58.
[ImH][trans-RuIIICl4(DMSO)(Im)] (where DMSO is dimethyl sulfoxide and Im is imidazole) (NAMI-A) is an antimetastatic prodrug currently in phase II clinical trials. The mechanisms of action of this and related Ru-based anticancer agents are not well understood, but several cellular targets have been suggested. Although Ru has been observed to bind to DNA following in vitro NAMI-A exposure, little is known about Ru–DNA interactions in vivo and even less is known about how this or related metallodrugs might influence cellular RNA. In this study, Ru accumulation in cellular RNA was measured following treatment of Saccharomyces cerevisiae with NAMI-A. Drug-dependent growth and cell viability indicate relatively high tolerance, with approximately 40% cell death occurring at 6 h for 450 μM NAMI-A. Significant dose-dependent accumulation of Ru in cellular RNA was observed by inductively coupled plasma mass spectrometry measurements on RNA extracted from yeast treated with NAMI-A. In vitro, binding of Ru species to drug-treated model DNA and RNA oligonucleotides at pH 6.0 and 7.4 was characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in the presence and absence of the reductant ascorbate. The extent of Ru–nucleotide interactions increases slightly with lower pH and significantly in the presence of ascorbate, with differences in observed species distribution. Taken together, these studies demonstrate the accumulation of aquated and reduced derivatives of NAMI-A on RNA in vitro and in cellulo, and enhanced binding with nucleic acid targets in a tumorlike acidic, reducing environment. To our knowledge, this is also the first study to characterize NAMI-A treatment of S. cerevisiae, a genetically tractable model organism.  相似文献   
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号