Caveolin induces membrane curvature and drives the formation of caveolae that participate in many crucial cell functions such as endocytosis. The central portion of caveolin-1 contains two helices (H1 and H2) connected by a three-residue break with both N- and C-termini exposed to the cytoplasm. Although a U-shaped configuration is assumed based on its inaccessibility by extracellular matrix probes, caveolin structure in a bilayer remains elusive. This work aims to characterize the structure and dynamics of caveolin-1 (D82–S136; Cav182–136) in a DMPC bilayer using NMR, fluorescence emission measurements, and molecular dynamics simulations. The secondary structure of Cav182–136 from NMR chemical shift indexing analysis serves as a guideline for generating initial structural models. Fifty independent molecular dynamics simulations (100 ns each) are performed to identify its favorable conformation and orientation in the bilayer. A representative configuration was chosen from these multiple simulations and simulated for 1 μs to further explore its stability and dynamics. The results of these simulations mirror those from the tryptophan fluorescence measurements (i.e., Cav182–136 insertion depth in the bilayer), corroborate that Cav182–136 inserts in the membrane with U-shaped conformations, and show that the angle between H1 and H2 ranges from 35 to 69°, and the tilt angle of Cav182–136 is 27 ± 6°. The simulations also reveal that specific faces of H1 and H2 prefer to interact with each other and with lipid molecules, and these interactions stabilize the U-shaped conformation. 相似文献
Human pluripotent stem cell (hPSC) lines have been considered to be homogeneously euploid. Here we report that normal hPSC--including induced pluripotent--lines are karyotypic mosaics of euploid cells intermixed with many cells showing non-clonal aneuploidies as identified by chromosome counting, spectral karyotyping (SKY) and fluorescent in situ hybridization (FISH) of interphase/non-mitotic cells. This mosaic aneuploidy resembles that observed in progenitor cells of the developing brain and preimplantation embryos, suggesting that it is a normal, rather than pathological, feature of stem cell lines. The karyotypic heterogeneity generated by mosaic aneuploidy may contribute to the reported functional and phenotypic heterogeneity of hPSCs lines, as well as their therapeutic efficacy and safety following transplantation. 相似文献
Enhancins are metalloproteinases, first identified in granuloviruses, that can enhance nucleopolyhedrovirus (NPV) potency. We had previously identified two enhancin genes (E1 and E2) in the Lymantria dispar multinucleocapsid NPV (LdMNPV) and showed that both were functional. For this study, we have extended our analysis of LdMNPV enhancin genes through an immunocytochemical analysis of E1 and E2 expression and localization. E1 and E2 peptide antibodies recognized proteins of approximately 84 kDa and 90 kDa, respectively, on Western blots of extracts from L. dispar 652Y cells infected with wild-type virus. The 84- and 90-kDa proteins were first detected at 48 h postinfection (p.i.) and were present through 96 h p.i. E1 and E2 peptide antibodies detected E1 and E2 in polyhedron extracts, and the antibodies were shown to be specific for E1 and E2, respectively, through the use of recombinant virus strains lacking the enhancin genes. E1 and E2 were further localized to occlusion-derived virus (ODV). The enhancins were not found in budded virus. Immunoelectron microscopy indicated that E1 and E2 were present in ODV envelopes and possibly in nucleocapsids. Fractionation studies with several detergents suggested that the enhancins were present in ODV envelopes in association with nucleocapsids. In contrast, enhancins in granuloviruses are located within the granulin matrix. The presence of LdMNPV enhancins within ODV provides a position for the proteins to interact directly on the peritrophic membrane as ODV traverses this host defense barrier. 相似文献
Much effort has focused on characterizing the signal transduction cascades that are associated with cardiac hypertrophy. In spite of this, we still know little about the mechanisms that inhibit hypertrophic growth. We define a novel anti-hypertrophic signaling pathway regulated by muscle ring finger protein-1 (MURF1) that inhibits the agonist-stimulated PKC-mediated signaling response in neonatal rat ventricular myocytes. MURF1 interacts with receptor for activated protein kinase C (RACK1) and colocalizes with RACK1 after activation with phenylephrine or PMA. Coincident with this agonist-stimulated interaction, MURF1 blocks PKCepsilon translocation to focal adhesions, which is a critical event in the hypertrophic signaling cascade. MURF1 inhibits focal adhesion formation, and the activity of downstream effector ERK1/2 is also inhibited in the presence of MURF1. MURF1 inhibits phenylephrine-induced (but not IGF-1-induced) increases in cell size. These findings establish that MURF1 is a key regulator of the PKC-dependent hypertrophic response and can blunt cardiomyocyte hypertrophy, which may have important implications in the pathophysiology of clinical cardiac hypertrophy. 相似文献
The side effects of cancer therapy on normal tissues limit the success of therapy. Generation of reactive oxygen species (ROS) has been implicated for numerous chemotherapeutic agents including doxorubicin (DOX), a potent cancer chemotherapeutic drug. The production of ROS by DOX has been linked to DNA damage, nuclear translocation of p53, and mitochondrial injury; however, the causal relationship and molecular mechanisms underlying these events are unknown. The present study used wild-type (WT) and p53 homozygous knock-out (p53(-/-)) mice to investigate the role of p53 in the crosstalk between mitochondria and nucleus. Injecting mice with DOX (20 mg/kg) causes oxidative stress in cardiac tissue as demonstrated by immunogold analysis of the levels of 4-hydroxy-2'-nonenal (4HNE)-adducted protein, a lipid peroxidation product bound to proteins. 4HNE levels increased in both nuclei and mitochondria of WT DOX-treated mice but only in nuclei of DOX-treated p53((-/-)) mice, implicating a critical role for p53 in causing DOX-induced oxidative stress in mitochondria. The stress-activated protein c-Jun amino-terminal kinase (JNKs) was activated in response to increased 4HNE in WT mice but not p53((-/-)) mice receiving DOX treatment, as determined by co-immunoprecipitation of HNE and pJNK. The activation of JNK in DOX treated WT mice was accompanied by Bcl-2 dissociation from Beclin in mitochondria and induction of type II cell death (autophagic cell death), as evidenced by an increase in LC3-I/LC-3-II ratio and γ-H2AX, a biomarker for DNA damage. The absence of p53 significantly reduces mitochondrial injury, assessed by quantitative morphology, and decline in cardiac function, assessed by left ventricular ejection fraction and fraction shortening. These results demonstrate that p53 plays a critical role in DOX-induced cardiac toxicity, in part, by the induction of oxidative stress mediated retrograde signaling. 相似文献
The southern Persian/Arabian Gulf experiences extreme seasonal temperature variation (> 20 °C) making it among the most hostile reef environments on Earth. Previous anecdotal evidence has suggested that seasonal temperature changes may influence regional reef fish assemblages, but to date research has been limited. To examine the influence of temperature on reef fish abundance and composition, we performed visual surveys in summer and in winter over three years at three reefs in the southern Gulf (Dhabiya, Saadiyat and Ras Ghanada). Overall abundance of fishes was 40% higher in summer than in winter, and multivariate analyses showed strong and significant differences in overall seasonal community structure, consistent at all sites and across all years. Seasonal differences were largely driven by nine of the 30 observed species, which together accounted for 70% of the divergence in community structure between summer and winter. Of these nine species, Lutjanus ehrenbergii, Lutjanus fulviflamma, Plectorhinchus sordidus and Abudefduf vaigiensis were significantly more abundant in summer, Parupeneus margaritatus and Acanthopagrus bifasciatus, were significantly more common on reefs in winter. We discuss these changes in terms of seasonal physiological and ecological constraints, and explore the implications of these changes on the functional ecology of reef fishes in this thermally variable and extreme environment.
Lung carcinoma development is accompanied by field changes that may have diagnostic significance. We have previously shown the importance of chromosomal aneusomy in lung cancer progression. Here, we tested whether genomic gains in six specific loci, TP63 on 3q28, EGFR on 7p12, MYC on 8q24, 5p15.2, and centromeric regions for chromosomes 3 (CEP3) and 6 (CEP6), may provide further value in the prediction of lung cancer. Bronchial biopsy specimens were obtained by LIFE bronchoscopy from 70 subjects (27 with prevalent lung cancers and 43 individuals without lung cancer). Twenty six biopsies were read as moderate dysplasia, 21 as severe dysplasia and 23 as carcinoma in situ (CIS). Four-micron paraffin sections were submitted to a 4-target FISH assay (LAVysion, Abbott Molecular) and reprobed for TP63 and CEP 3 sequences. Spot counts were obtained in 30–50 nuclei per specimen for each probe. Increased gene copy number in 4 of the 6 probes was associated with increased risk of being diagnosed with lung cancer both in unadjusted analyses (odds ratio = 11, p<0.05) and adjusted for histology grade (odds ratio = 17, p<0.05). The most informative 4 probes were TP63, MYC, CEP3 and CEP6. The combination of these 4 probes offered a sensitivity of 82% for lung cancer and a specificity of 58%. These results indicate that specific cytogenetic alterations present in preinvasive lung lesions are closely associated with the diagnosis of lung cancer and may therefore have value in assessing lung cancer risk. 相似文献
Obesity has been found to be associated with left ventricular (LV) hypertrophy (LVH). However, the occurrence of LVH in obese teenagers who are involved in sport programs has not been studied. The objective of this study was to evaluate the prevalence of LVH and its correlation with obesity, gender, and symptoms in teenage athletes. We used echocardiographic database of 1,500 adolescences between the ages of 12 and 20 years who were actively involved in school sport programs. We evaluated associations between obesity and LVH (defined as LV wall thickness (LVWT)) >12 mm, or LV mass (LVM) >215 g or relative wall thickness (RWT) >0.43) and physical symptoms. Using univariate and multivariate analysis, male gender was associated with increased LVWT (multivariate odds ratio (OR) 4.87, confidence interval (CI) 2.41–9.82). Obesity was associated with parameters of LVH using univariate and multivariate analysis. (LVM > 215 g) occurred in 10.32% of obese athletes vs. 0.2% (1/445) of controls, (OR 51.33, CI 6.05–433.8), P < 0.001, LVWT >12 mm occurred in 16.5% of obese students vs. 3.6% of controls (OR 5.2, CI 2.7–10.1, P < 0.001), RWT >0.43 occurred in 41.4% of obese students vs. 15.7% of controls (OR 3.78, CI 2.11–6.76, P < 0.001). After adjusting for age and gender, reported history of shortness of breath (SOB), fatigue and leg edema were also significantly more prevalent in obese students and in students with LVH. In conclusion obesity is associated with LVH in a population of healthy teenagers actively involved in sport programs. Furthermore, the presence of LVH was independently associated with many physical symptoms suggesting negative effect of LVH on myocardial function. 相似文献