首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1803篇
  免费   178篇
  国内免费   2篇
  1983篇
  2023年   6篇
  2022年   38篇
  2021年   43篇
  2020年   43篇
  2019年   33篇
  2018年   49篇
  2017年   35篇
  2016年   61篇
  2015年   91篇
  2014年   107篇
  2013年   121篇
  2012年   146篇
  2011年   148篇
  2010年   88篇
  2009年   98篇
  2008年   121篇
  2007年   97篇
  2006年   100篇
  2005年   92篇
  2004年   87篇
  2003年   79篇
  2002年   62篇
  2001年   14篇
  2000年   17篇
  1999年   19篇
  1998年   16篇
  1996年   8篇
  1995年   6篇
  1994年   10篇
  1993年   6篇
  1992年   12篇
  1991年   7篇
  1990年   7篇
  1989年   4篇
  1988年   6篇
  1987年   7篇
  1986年   9篇
  1985年   5篇
  1984年   7篇
  1983年   7篇
  1982年   12篇
  1981年   4篇
  1980年   5篇
  1979年   4篇
  1978年   7篇
  1977年   4篇
  1974年   3篇
  1973年   3篇
  1971年   4篇
  1921年   2篇
排序方式: 共有1983条查询结果,搜索用时 15 毫秒
11.
Antisense oligonucleotides (ASOs) have emerged as a new class of drugs to treat a wide range of diseases, including neurological indications. Spinraza, an ASO that modulates splicing of SMN2 RNA, has shown profound disease modifying effects in Spinal Muscular Atrophy (SMA) patients, energizing efforts to develop ASOs for other neurological diseases. While SMA specifically affects spinal motor neurons, other neurological diseases affect different central nervous system (CNS) regions, neuronal and non-neuronal cells. Therefore, it is important to characterize ASO distribution and activity in all major CNS structures and cell types to have a better understanding of which neurological diseases are amenable to ASO therapy. Here we present for the first time the atlas of ASO distribution and activity in the CNS of mice, rats, and non-human primates (NHP), species commonly used in preclinical therapeutic development. Following central administration of an ASO to rodents, we observe widespread distribution and target RNA reduction throughout the CNS in neurons, oligodendrocytes, astrocytes and microglia. This is also the case in NHP, despite a larger CNS volume and more complex neuroarchitecture. Our results demonstrate that ASO drugs are well suited for treating a wide range of neurological diseases for which no effective treatments are available.  相似文献   
12.
An intracellular bacterium originally isolated from hatchery-reared juvenile white seabass Atractoscion nobilis in southern California, USA, was identified by sequences of the small and large subunit ribosomal (16S and 23S) DNA and the internal transcribed spacer (ITS) as Piscirickettsia salmonis. Considering all rDNA sequences compared, the white seabass isolate (WSB-98) had a 96.3 to 98.7% homology with 4 previously described strains of P. salmonis isolated from salmon in Chile, Norway, and British Columbia, Canada. Experimental infections induced by intraperitoneal injections of juvenile white seabass with WSB-98 resulted in disease and mortality similar to that observed in P. salmonis infections in salmon. After 60 d, the cumulative mortality among P. salmonis-injected white seabass was 82 and 40%, respectively, following a high (1.99 x 10(4) TCID50) or low (3.98 x 10(2) TCID50) dose-challenge with WSB-98. The bacterium was recovered by isolation in cell culture or was observed in stains from tissues of injected white seabass but not from control fish. There were no external signs of infection. Internally, the most common gross lesion was a mottled appearance of the liver, sometimes with distinct nodules. Microscopic lesions were evident in both the capsule and parenchyma of the liver and were characterized by multifocal necrosis, often with infiltration of mononuclear leukocytes. Macrophages filled with bacteria were present at tissue sites exhibiting focal necrosis. Foreign body-type granulomas were prevalent in livers of experimentally infected white seabass, but not in control fish. Similar granulomatous lesions were observed in the spleen, kidney, intestine and gills, but these organs were considered secondary sites of infection, with significantly fewer and less severe histologic lesions compared to the liver. The results from this study clearly indicate that infections with P. salmonis are not restricted to salmonid fishes and that the bacterium can cause a disease similar to piscirickettsiosis in nonsalmonid hosts.  相似文献   
13.
Neurologic disease caused by human immunodeficiency virus type 1 (HIV-1) is ultimately refractory to highly active antiretroviral therapy (HAART) because of failure of complete virus eradication in the central nervous system (CNS), and disruption of normal neural signaling events by virally induced chronic neuroinflammation. We have previously reported that HIV-1 Tat can induce mitochondrial hyperpolarization in cortical neurons, thus compromising the ability of the neuron to buffer calcium and sustain energy production for normal synaptic communication. In this report, we demonstrate that Tat induces rapid loss of ER calcium mediated by the ryanodine receptor (RyR), followed by the unfolded protein response (UPR) and pathologic dilatation of the ER in cortical neurons in vitro. RyR antagonism attenuated both Tat-mediated mitochondrial hyperpolarization and UPR induction. Delivery of Tat to murine CNS in vivo also leads to long-lasting pathologic ER dilatation and mitochondrial morphologic abnormalities. Finally, we performed ultrastructural studies that demonstrated mitochondria with abnormal morphology and dilated endoplasmic reticulum (ER) in brain tissue of patients with HIV-1 inflammation and neurodegeneration. Collectively, these data suggest that abnormal RyR signaling mediates the neuronal UPR with failure of mitochondrial energy metabolism, and is a critical locus for the neuropathogenesis of HIV-1 in the CNS.  相似文献   
14.
Evaluation of monoclonal antibody (mAb) fragments (e.g., Fab', Fab, or engineered fragments) as cancer-targeting reagents for therapy with the α-particle emitting radionuclide astatine-211 ((211)At) has been hampered by low in vivo stability of the label and a propensity of these proteins localize to kidneys. Fortunately, our group has shown that the low stability of the (211)At label, generally a meta- or para-[(211)At]astatobenzoyl conjugate, on mAb Fab' fragments can be dramatically improved by the use of closo-decaborate(2-) conjugates. However, the higher stability of radiolabeled mAb Fab' conjugates appears to result in retention of radioactivity in the kidneys. This investigation was conducted to evaluate whether the retention of radioactivity in kidney might be decreased by the use of an acid-cleavable hydrazone between the Fab' and the radiolabeled closo-decaborate(2-) moiety. Five conjugation reagents containing sulfhydryl-reactive maleimide groups, a hydrazone functionality, and a closo-decaborate(2-) moiety were prepared. In four of the five conjugation reagents, a discrete poly(ethylene glycol) (PEG) linker was used, and one substituent adjacent to the hydrazone was varied (phenyl, benzoate, anisole, or methyl) to provide varying acid sensitivity. In the initial studies, the five maleimido-closo-decaborate(2-) conjugation reagents were radioiodinated ((125)I or (131)I), then conjugated with an anti-PSMA Fab' (107-1A4 Fab'). Biodistributions of the five radioiodinated Fab' conjugates were obtained in nude mice at 1, 4, and 24 h post injection (pi). In contrast to closo-decaborate(2-) conjugated to 107-1A4 Fab' through a noncleavable linker, two conjugates containing either a benzoate or a methyl substituent on the hydrazone functionality displayed clearance rates from kidney, liver, and spleen that were similar to those obtained with directly radioiodinated Fab' (i.e., no conjugate). The maleimido-closo-decaborate(2-) conjugation reagent containing a benzoate substituent on the hydrazone was chosen for study with (211)At. That reagent was conjugated with 107-1A4 Fab', then labeled (separately) with (125)I and (211)At. The radiolabeled Fab' conjugates were coinjected into nude mice bearing LNCaP human tumor xenografts, and biodistribution data were obtained at 1, 4, and 24 h pi. Tumor targeting was achieved with both (125)I- and (211)At-labeled Fab', but the (211)At-labeled Fab' reached a higher concentration (25.56 ± 11.20 vs 11.97 ± 1.31%ID/g). Surprisingly, while the (125)I-labeled Fab' was cleared from kidney similar to earlier studies, the (211)At-labeled Fab'was not (i.e., kidney conc. for (125)I vs (211)At; 4 h, 13.14 ± 2.03 ID/g vs 42.28 ± 16.38%D/g; 24 h, 4.23 ± 1.57 ID/g vs 39.52 ± 15.87%ID/g). Since the Fab' conjugate is identical in both cases except for the radionuclide, it seems likely that the difference in tissue clearance seen is due to an effect that (211)At has on either the hydrazone cleavage or on the retention of a metabolite. Results from other studies in our laboratory suggest that the latter case is most likely. The hydrazone linkers tested do not provide the tissue clearance sought for (211)At, so additional hydrazones linkers will be evaluated. However, the results support the use of hydrazone linkers when Fab' conjugated with closo-decaborate(2-) reagents are radioiodinated.  相似文献   
15.
16.
Weight regain after weight loss is the most significant impediment to long-term weight reduction. We have developed a rodent paradigm that models the process of regain after weight loss, and we have employed both prospective and cross-sectional analyses to characterize the compensatory adaptations to weight reduction that may contribute to the propensity to regain lost weight. Obese rats were fed an energy-restricted (50-60% kcal) low-fat diet that reduced body weight by 14%. This reduced weight was maintained for up to 16 wk with limited provisions of the low-fat diet. Intake restriction was then removed, and the rats were followed for 56 days as they relapsed to the obese state. Prolonged weight reduction was accompanied by 1) a persistent energy gap resulting from an increased drive to eat and a reduced expenditure of energy, 2) a higher caloric efficiency of regain that may be linked with suppressed lipid utilization early in the relapse process, 3) preferential lipid accumulation in adipose tissue accompanied by adipocyte hyperplasia, and 4) humoral adiposity signals that underestimate the level of peripheral adiposity and likely influence the neural pathways controlling energy balance. Taken together, long-term weight reduction in this rodent paradigm is accompanied by a number of interrelated compensatory adjustments in the periphery that work together to promote rapid and efficient weight regain. These metabolic adjustments to weight reduction are discussed in the context of a homeostatic feedback system that controls body weight.  相似文献   
17.
Aquatic Ecology - Arguably climate change is one of the biggest challenges faced by many organisms. One of the more significant of these is the decreasing pH level of the ocean, a consequence of...  相似文献   
18.
Using bioinformatic, proteomic, immunofluorescence, and genetic cross methods, we have functionally characterized a family of putative parasite ligands as potential mediators of cell-cell interactions. We name these proteins the Limulus clotting factor C, Coch-5b2, and Lgl1 (LCCL)-lectin adhesive-like protein (LAP) family. We demonstrate that this family is conserved amongst Plasmodium spp. It possesses a unique arrangement of adhesive protein domains normally associated with extracellular proteins. The proteins are expressed predominantly, though not exclusively, in the mosquito stages of the life cycle. We test the hypothesis that these proteins are surface proteins with 1 member of this gene family, lap1, and provide evidence that it is expressed on the surface of Plasmodium berghei sporozoites. Finally, through genetic crosses of wild-type Pblap1+ and transgenic Pblap1- parasites, we show that the null phenotype previously reported for sporozoite development in a Pblap1- mutant can be rescued within a heterokaryotic oocyst and that infectious Pblap1 sporozoites can be formed. The mutant is not rescued by coparasitization of mosquitoes with a mixture Pblap1+ and Pblap1- homokaryotic oocysts.  相似文献   
19.
Beisel CJ  Rokyta DR  Wichman HA  Joyce P 《Genetics》2007,176(4):2441-2449
In modeling evolutionary genetics, it is often assumed that mutational effects are assigned according to a continuous probability distribution, and multiple distributions have been used with varying degrees of justification. For mutations with beneficial effects, the distribution currently favored is the exponential distribution, in part because it can be justified in terms of extreme value theory, since beneficial mutations should have fitnesses in the extreme right tail of the fitness distribution. While the appeal to extreme value theory seems justified, the exponential distribution is but one of three possible limiting forms for tail distributions, with the other two loosely corresponding to distributions with right-truncated tails and those with heavy tails. We describe a likelihood-ratio framework for analyzing the fitness effects of beneficial mutations, focusing on testing the null hypothesis that the distribution is exponential. We also describe how to account for missing the smallest-effect mutations, which are often difficult to identify experimentally. This technique makes it possible to apply the test to gain-of-function mutations, where the ancestral genotype is unable to grow under the selective conditions. We also describe how to pool data across experiments, since we expect few possible beneficial mutations in any particular experiment.  相似文献   
20.
Xu X  Xie C  Edwards H  Zhou H  Buck SA  Ge Y 《PloS one》2011,6(2):e17138

Background

Pediatric acute myeloid leukemia (AML) remains a challenging disease to treat even with intensified cytarabine-based chemotherapy. Histone deacetylases (HDACs) have been reported to be promising therapeutic targets for treating AML. However, HDAC family members that are involved in chemotherapy sensitivities remain unknown. In this study, we sought to identify members of the HDAC family that are involved in cytarabine sensitivities, and to select the optimal HDACI that is most efficacious when combined with cytarabine for treating children with AML.

Methodology

Expression profiles of classes I, II, and IV HDACs in 4 pediatric AML cell lines were determined by Western blotting. Inhibition of class I HDACs by different HDACIs was measured post immnunoprecipitation. Individual down-regulation of HDACs in pediatric AML cells was performed with lentiviral shRNA. The effects of cytarabine and HDACIs on apoptosis were determined by flow cytometry analysis.

Results

Treatments with structurally diverse HDACIs and HDAC shRNA knockdown experiments revealed that down-regulation of both HDACs 1 and 6 is critical in enhancing cytarabine-induced apoptosis in pediatric AML, at least partly mediated by Bim. However, down-regulation of HDAC2 may negatively impact cytarabine sensitivities in the disease. At clinically achievable concentrations, HDACIs that simultaneously inhibited both HDACs 1 and 6 showed the best anti-leukemic activities and significantly enhanced cytarabine-induced apoptosis.

Conclusion

Our results further confirm that HDACs are bona fide therapeutic targets for treating pediatric AML and suggest that pan-HDACIs may be more beneficial than isoform-specific drugs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号