首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3341篇
  免费   339篇
  国内免费   2篇
  3682篇
  2023年   20篇
  2022年   52篇
  2021年   66篇
  2020年   63篇
  2019年   62篇
  2018年   76篇
  2017年   54篇
  2016年   92篇
  2015年   148篇
  2014年   168篇
  2013年   198篇
  2012年   225篇
  2011年   245篇
  2010年   138篇
  2009年   147篇
  2008年   200篇
  2007年   153篇
  2006年   150篇
  2005年   135篇
  2004年   154篇
  2003年   136篇
  2002年   131篇
  2001年   70篇
  2000年   70篇
  1999年   62篇
  1998年   39篇
  1997年   16篇
  1996年   24篇
  1995年   25篇
  1994年   23篇
  1993年   20篇
  1992年   50篇
  1991年   32篇
  1990年   44篇
  1989年   31篇
  1988年   29篇
  1987年   30篇
  1986年   17篇
  1985年   20篇
  1984年   26篇
  1983年   26篇
  1982年   26篇
  1981年   16篇
  1980年   20篇
  1979年   19篇
  1978年   15篇
  1977年   10篇
  1971年   8篇
  1969年   9篇
  1967年   15篇
排序方式: 共有3682条查询结果,搜索用时 0 毫秒
71.
72.
Two prevailing paradigms explain the diversity of sex-determining modes in reptiles. Many researchers, particularly those who study reptiles, consider genetic and environmental sex-determining mechanisms to be fundamentally different, and that one can be demonstrated experimentally to the exclusion of the other. Other researchers, principally those who take a broader taxonomic perspective, argue that no clear boundaries exist between them. Indeed, we argue that genetic and environmental sex determination in reptiles should be seen as a continuum of states represented by species whose sex is determined primarily by genotype, species where genetic and environmental mechanisms coexist and interact in lesser or greater measure to bring about sex phenotypes, and species where sex is determined primarily by environment. To do otherwise limits the scope of investigations into the transition between the two and reduces opportunities to use studies of reptiles to advance understanding of vertebrate sex determination generally.  相似文献   
73.
Apolipoprotein A-I (apoA-I)-mediated cholesterol efflux involves the binding of apoA-I to the plasma membrane via its C terminus and requires cellular ATP-binding cassette transporter (ABCA1) activity. ApoA-I also stimulates secretion of apolipoprotein E (apoE) from macrophage foam cells, although the mechanism of this process is not understood. In this study, we demonstrate that apoA-I stimulates secretion of apoE independently of both ABCA1-mediated cholesterol efflux and of lipid binding by its C terminus. Pulse-chase experiments using (35)S-labeled cellular apoE demonstrate that macrophage apoE exists in both relatively mobile (E(m)) and stable (E(s)) pools, that apoA-I diverts apoE from degradation to secretion, and that only a small proportion of apoA-I-mobilized apoE is derived from the cell surface. The structural requirements for induction of apoE secretion and cholesterol efflux are clearly dissociated, as C-terminal deletions in recombinant apoA-I reduce cholesterol efflux but increase apoE secretion, and deletion of central helices 5 and 6 decreases apoE secretion without perturbing cholesterol efflux. Moreover, a range of 11- and 22-mer alpha-helical peptides representing amphipathic alpha-helical segments of apoA-I stimulate apoE secretion whereas only the C-terminal alpha-helix (domains 220-241) stimulates cholesterol efflux. Other alpha-helix-containing apolipoproteins (apoA-II, apoA-IV, apoE2, apoE3, apoE4) also stimulate apoE secretion, implying a positive feedback autocrine loop for apoE secretion, although apoE4 is less effective. Finally, apoA-I stimulates apoE secretion normally from macrophages of two unrelated subjects with genetically confirmed Tangier Disease (mutations C733R and c.5220-5222delTCT; and mutations A1046D and c.4629-4630insA), despite severely inhibited cholesterol efflux. We conclude that apoA-I stimulates secretion of apoE independently of cholesterol efflux, and that this represents a novel, ABCA-1-independent, positive feedback pathway for stimulation of potentially anti-atherogenic apoE secretion by alpha-helix-containing molecules including apoA-I and apoE.  相似文献   
74.
Bacterial chemotaxis, the directed movement of a cell population in response to a chemical gradient, plays a critical role in the distribution and dynamic interaction of bacterial populations in nonmixed systems. Therefore, in order to make reliable predictions about the migratory behavior of bacteria within the environment, a quantitative characterization of the chemotactic response in terms of intrinsic cell properties is needed.The design of the stopped-flow diffusion chamber (SFDC) provides a well-characterized chemical gradient and reliable method for measuring bacterial migration behavior. During flow through the chamber, a step change in chemical concentration is imposed on a uniform suspension of bacteria. Once flow is stopped, diffusion causes a transient chemical gradient to develop, and bacteria respond by forming a band of high cell density which travels toward higher concentrations of the attractant. Changes in bacterial spatial distributions observed through light scattering are recorded on photomicrographs during a 10-min period. Computer-aided image analysis converts absorbance of the photographic negatives to a digital representation of bacterial density profiles. A mathematical model (part II) is used to quantitatively characterize these observations in terms of intrinsic cell parameters: a chemotactic sensitivity coefficient, mu(0), from the aggregate cell density accumulated in the band and a random motility coefficient, mu, from population dispersion in the absence of a chemical gradient.Using the SFDC assay and an individual-cell-based mathematical model, we successfully determined values for both of these population parameters for Escherichia coli K12 responding to fucose. The values obtained were mu = 1.1 +/- 0. 4 x 10(-5) cm(2)/s and chi(o) = 8 +/- 3 +/- 10(-5) cm(2)/s. We have demonstrated a method capable of determining these parameter values from the now validated mathematical model which will be useful for predicting bacterial migration in application systems.  相似文献   
75.
Intrinsic membrane proteins represent a large fraction of the proteins produced by living organisms and perform many crucial functions. Structural and functional characterization of membrane proteins generally requires that they be extracted from the native lipid bilayer and solubilized with a small synthetic amphiphile, for example, a detergent. We describe the development of a small molecule with a distinctive amphiphilic architecture, a "tripod amphiphile," that solubilizes both bacteriorhodopsin (BR) and bovine rhodopsin (Rho). The polar portion of this amphiphile contains an amide and an amine-oxide; small variations in this polar segment are found to have profound effects on protein solubilization properties. The optimal tripod amphiphile extracts both BR and Rho from the native membrane environments and maintains each protein in a monomeric native-like form for several weeks after delipidation. Tripod amphiphiles are designed to display greater conformational rigidity than conventional detergents, with the long-range goal of promoting membrane protein crystallization. The results reported here represent an important step toward that ultimate goal.  相似文献   
76.
Electrogenicity of the Na(+)/K(+) pump has the capability to generate a large negative membrane potential independently of ion-channel current. The high background membrane resistance of arterioles may make them susceptible to such an effect. Pump current was detected by patch-clamp recording from smooth muscle cells in fragments of arterioles (diameter 24-58 microm) isolated from pial membrane of rabbit cerebral cortex. The current was 20 pA at -60 mV, and the extrapolated zero current potential was -160 mV. Two methods of estimating the effect of pump electrogenicity on resting potential indicated an average contribution of -35 mV. In 20% of the recordings, block of inward rectifier K(+) channels by 10-100 microM Ba(2+) led to a small depolarization, but hyperpolarization was a more common response. Ba(2+) also inhibited depolarization evoked by 20 mM K(+). In arterioles within intact pial membrane, Ba(2+) failed to evoke constriction but inhibited K(+)-induced constriction. The data suggest that cerebral arterioles are vulnerable to the hyperpolarizing effect of the Na(+)/K(+) pump, excessive effects of which are prevented by depolarizing inward rectifier K(+) current  相似文献   
77.
Thymineless death (TLD) is the rapid loss of colony-forming ability in bacterial, yeast and human cells starved for thymine, and is the mechanism of action of common chemotherapeutic drugs. In Escherichia coli, significant loss of viability during TLD requires the SOS replication-stress/DNA-damage response, specifically its role in inducing the inhibitor of cell division, SulA. An independent RecQ- and RecJ-dependent TLD pathway accounts for a similarly large additional component of TLD, and a third SOS- and RecQ/J-independent TLD pathway has also been observed. Although two groups have implicated the SOS-response in TLD, an SOS-deficient mutant strain from an earlier study was found to be sensitive to thymine deprivation. We performed whole-genome resequencing on that SOS-deficient strain and find that, compared with the SOS-proficient control strain, it contains five mutations in addition to the SOS-blocking lexA(Ind) mutation. One of the additional mutations, csrA, confers TLD sensitivity specifically in SOS-defective strains. We find that CsrA, a carbon storage regulator, reduces TLD in SOS- or SulA-defective cells, and that the increased TLD that occurs in csrA SOS-defective cells is dependent on RecQ. We consider a hypothesis in which the modulation of nucleotide pools by CsrA might inhibit TLD specifically in SOS-deficient (SulA-deficient) cells.  相似文献   
78.
Homo erectus was the first human lineage to disperse widely throughout the Old World, the only hominin in Asia through much of the Pleistocene, and was likely ancestral to H. sapiens. The demise of this taxon remains obscure because of uncertainties regarding the geological age of its youngest populations. In 1996, some of us co-published electron spin resonance (ESR) and uranium series (U-series) results indicating an age as young as 35-50 ka for the late H. erectus sites of Ngandong and Sambungmacan and the faunal site of Jigar (Indonesia). If correct, these ages favor an African origin for recent humans who would overlap with H. erectus in time and space. Here, we report (40)Ar/(39)Ar incremental heating analyses and new ESR/U-series age estimates from the "20 m terrace" at Ngandong and Jigar. Both data sets are internally consistent and provide no evidence for reworking, yet they are inconsistent with one another. The (40)Ar/(39)Ar analyses give an average age of 546±12 ka (sd±5 se) for both sites, the first reliable radiometric indications of a middle Pleistocene component for the terrace. Given the technical accuracy and consistency of the analyses, the argon ages represent either the actual age or the maximum age for the terrace and are significantly older than previous estimates. Most of the ESR/U-series results are older as well, but the oldest that meets all modeling criteria is 143 ka+20/-17. Most samples indicated leaching of uranium and likely represent either the actual or the minimum age of the terrace. Given known sources of error, the U-series results could be consistent with a middle Pleistocene age. However, the ESR and (40)Ar/(39)Ar ages preclude one another. Regardless, the age of the sites and hominins is at least bracketed between these estimates and is older than currently accepted.  相似文献   
79.
Osmotic stress is a potent regulator of biological function in many cell types, but its mechanism of action is only partially understood. In this study, we examined whether changes in extracellular osmolality can alter chromatin condensation and the rate of nucleocytoplasmic transport, as potential mechanisms by which osmotic stress can act. Transport of 10 kDa dextran was measured both within and between the nucleus and the cytoplasm using two different photobleaching methods. A mathematical model was developed to describe fluorescence recovery via nucleocytoplasmic transport. As osmolality increased, the diffusion coefficient of dextran decreased in the cytoplasm, but not the nucleus. Hyper-osmotic stress decreased nuclear size and increased nuclear lacunarity, indicating that while the nucleus was getting smaller, the pores and channels interdigitating the chromatin had expanded. The rate of nucleocytoplasmic transport was increased under hyper-osmotic stress but was insensitive to hypo-osmotic stress, consistent with the nonlinear osmotic properties of the nucleus. The mechanism of this osmotic sensitivity appears to be a change in the size and geometry of the nucleus, resulting in a shorter effective diffusion distance for the nucleus. These results may explain physical mechanisms by which osmotic stress can influence intracellular signaling pathways that rely on nucleocytoplasmic transport.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号