首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1947篇
  免费   228篇
  国内免费   2篇
  2023年   6篇
  2022年   39篇
  2021年   48篇
  2020年   45篇
  2019年   39篇
  2018年   55篇
  2017年   38篇
  2016年   67篇
  2015年   88篇
  2014年   112篇
  2013年   129篇
  2012年   155篇
  2011年   153篇
  2010年   84篇
  2009年   94篇
  2008年   128篇
  2007年   107篇
  2006年   93篇
  2005年   98篇
  2004年   87篇
  2003年   78篇
  2002年   69篇
  2001年   18篇
  2000年   21篇
  1999年   22篇
  1998年   21篇
  1997年   14篇
  1996年   5篇
  1995年   5篇
  1994年   11篇
  1993年   9篇
  1992年   19篇
  1991年   13篇
  1990年   14篇
  1989年   9篇
  1988年   12篇
  1987年   11篇
  1986年   14篇
  1985年   9篇
  1984年   10篇
  1983年   14篇
  1982年   13篇
  1981年   8篇
  1980年   9篇
  1979年   8篇
  1978年   7篇
  1973年   5篇
  1972年   5篇
  1969年   6篇
  1966年   5篇
排序方式: 共有2177条查询结果,搜索用时 15 毫秒
131.
The basidiomycete Chondrostereum purpureum produces several plant cell wall-degrading enzymes, including endopolygalacturonase (endoPG). Degenerate oligonucleotide primers were designed according to conserved regions of endoPG genes from various fungi, plants, and bacteria and used to amplify members of this gene family from C. purpureum. Four different amplification products showed significant similarity to known endoPGs and were used as hybridization probes to screen a library of genomic DNA sequences and to retrieve five full-length endoPG genes (epgA, epgB1, epgB2, epgC, and epgD). The identities between the deduced polypeptides for epgA, epgB1, epgC, and epgD ranged from 61.8 to 80.0%, while the deduced polypeptides for epgB1 and epgB2 shared 97.1% identity. Phylogenetic analysis suggested that the duplication of existing endoPG genes occurred after the divergence of the ascomycetes and basidiomycetes. C. purpureum is the first basidiomycete fungus for which the endoPG gene family has been described.  相似文献   
132.
Neuropeptides are released into the extracellular space from large secretory granules. In order to reach their release sites, these granules are translocated on microtubules and thought to interact with filamentous actin as they approach the cell membrane. We have used a green fluorescent protein-tagged neuropeptide prohormone (prepro-orphanin FQ) to visualize vesicle trafficking dynamics in NS20Y cells and cultures of primary hippocampal neurons. We found that the majority of secretory granules were mobile and accumulated at both the tips of neurites as well as other apparently specialized cellular sites. We also used live-cell imaging to test the notion that peptidergic vesicle mobility was regulated by secretagogues. We show that treatment with forskolin appeared to increase vesicle rates of speed, while depolarization with high K+ had no effect, even though both treatments stimulated neuropeptide secretion. In cultured hippocampal neurons the green fluorescent protein-tagged secretory vesicles were routed to both dendrites and axons, indicating that peptidergic vesicle transport was not polarized. Basal peptidergic vesicle mobility rates in hippocampal neurons were the same as those in NS20Y cells. Taken together, these studies suggest that secretory vesicle mobility is regulated by specific classes of secretagogues and that neuropeptide containing secretory vesicles may be released from dendritic structures.  相似文献   
133.
The molecular mechanisms of peroxisome biogenesis have begun to emerge; in contrast, relatively little is known about how the organelle functions as cells age. In this report, we characterize age-related changes in peroxisomes of human cells. We show that aging compromises peroxisomal targeting signal 1 (PTS1) protein import, affecting in particular the critical antioxidant enzyme catalase. The number and appearance of peroxisomes are altered in these cells, and the organelles accumulate the PTS1-import receptor, Pex5p, on their membranes. Concomitantly, cells produce increasing amounts of the toxic metabolite hydrogen peroxide, and we present evidence that this increased load of reactive oxygen species may further reduce peroxisomal protein import and exacerbate the effects of aging.  相似文献   
134.
We demonstrated previously that IGFBP-3 alone had no effect on cell death, but dramatically modulated apoptosis in Hs578T IGF non-responsive cells. We investigated whether a non-IGF binding mutant of IGFBP-3 retained its intrinsic actions in this cell line, prior to investigating its actions in IGF-responsive cells (MCF-7 and MCF-10A). In the Hs578T cells, the ceramide analogue, C2-induced apoptosis, non-glycosylated, glycosylated or mutant IGFBP-3 alone had no effect but on co-incubation with C2, all forms of IGFBP-3 markedly accentuated triggered apoptosis. In MCF-7 cells, IGFBP-3 was unable to modulate C2-induced death. In the MCF-10A cells, IGFBP-3 acted as a potent survival factor. IGFBP-3 also affected cell growth in the MCF-10A cells (inhibiting at low doses but increasing growth at higher concentrations). These actions of IGFBP-3 in the MCF-10A cells were independent of IGF-1. IGFBP-3 has differential IGF-independent effects on cell death and growth in normal breast and breast cancer cells.  相似文献   
135.
136.
137.
138.
Lipid peroxidation has been implicated in a variety of pathophysiological processes, including inflammation, atherogenesis, neurodegeneration, and the ageing process. Phospholipid hydroperoxide glutathione peroxidase (GPX4) is the only major antioxidant enzyme known to directly reduce phospholipid hydroperoxides within membranes and lipoproteins, acting in conjunction with alpha tocopherol (vitamin E) to inhibit lipid peroxidation. Here we describe the generation and characterization of GPX4-deficient mice by targeted disruption of the murine Gpx4 locus through homologous recombination in embryonic stem cells. Gpx4(-/-) embryos die in utero by midgestation (E7.5) and are associated with a lack of normal structural compartmentalization. Gpx4(+/-) mice display reduced levels of Gpx4 mRNA and protein in various tissues. Interestingly, cell lines derived from Gpx4(+/-) mice are markedly sensitive to inducers of oxidative stress, including gamma-irradiation, paraquat, tert-butylhydroperoxide, and hydrogen peroxide, as compared to cell lines derived from wild-type control littermates. Gpx4(+/-) mice also display reduced survival in response to gamma-irradiation. Our observations establish GPX4 as an essential antioxidant enzyme in mice and suggest that it performs broad functions as a component of the mammalian antioxidant network.  相似文献   
139.
A previous study using mice null for Gpx4 indicates that PHGPx plays a critical role in antioxidant defense and is essential for the survival of the mouse. In the present study, we further analyzed the stress response of MEFs (murine embryonic fibroblasts) derived from mice heterozygous for the Gpx4 gene (Gpx4(+/-) mice). MEFs from Gpx4(+/-) mice have a 50% reduction in PHGPx expression without any changes in the activities of other major antioxidant defense enzymes. Compared to MEFs from Gpx4(+/+) mice, MEFs from Gpx4(+/-) mice were more sensitive to exposure to the oxidizing agent t-butyl hydroperoxide (t-BuOOH), and t-BuOOH exposure induced increased apoptosis in MEFs from Gpx4(+/-) mice. When cultured at low cell density, MEFs from Gpx4(+/-) mice also showed retarded growth under normal culture conditions (20% oxygen) that was reversed by culturing under low oxygen (2% oxygen). In addition, oxidative damage was increased in the MEFs from the Gpx4(+/-) mice, as indicated by increased levels of F(2)-isoprostanes and 8-oxo-2-deoxyguanosine in these cells. Our data demonstrate that MEFs from Gpx4(+/-) mice are more sensitive to oxidative stress because of reduced expression of PHGPx.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号