首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2440篇
  免费   265篇
  国内免费   2篇
  2022年   21篇
  2021年   56篇
  2020年   47篇
  2019年   43篇
  2018年   51篇
  2017年   48篇
  2016年   75篇
  2015年   114篇
  2014年   127篇
  2013年   163篇
  2012年   176篇
  2011年   170篇
  2010年   100篇
  2009年   108篇
  2008年   162篇
  2007年   121篇
  2006年   119篇
  2005年   118篇
  2004年   107篇
  2003年   103篇
  2002年   82篇
  2001年   40篇
  2000年   48篇
  1999年   38篇
  1998年   29篇
  1996年   10篇
  1995年   13篇
  1994年   22篇
  1993年   16篇
  1992年   22篇
  1991年   19篇
  1990年   22篇
  1989年   23篇
  1988年   19篇
  1987年   21篇
  1986年   16篇
  1985年   13篇
  1984年   16篇
  1983年   17篇
  1982年   19篇
  1980年   9篇
  1979年   11篇
  1978年   15篇
  1977年   15篇
  1975年   10篇
  1974年   8篇
  1973年   13篇
  1972年   7篇
  1970年   8篇
  1967年   7篇
排序方式: 共有2707条查询结果,搜索用时 154 毫秒
991.
992.
993.
Age is a risk factor for numerous diseases, including neurodegenerative diseases, cancers, and diabetes. Loss of protein homeostasis is a central hallmark of aging. Activation of the endoplasmic reticulum unfolded protein response (UPRER) includes changes in protein translation and membrane lipid synthesis. Using stable isotope labeling, a flux “signature” of the UPRER in vivo in mouse liver was developed by inducing ER stress with tunicamycin and measuring rates of both proteome‐wide translation and de novo lipogenesis. Several changes in protein synthesis across ontologies were noted with age, including a more dramatic suppression of translation under ER stress in aged mice as compared with young mice. Binding immunoglobulin protein (BiP) synthesis rates and mRNA levels were increased more in aged than young mice. De novo lipogenesis rates decreased under ER stress conditions in aged mice, including both triglyceride and phospholipid fractions. In young mice, a significant reduction was seen only in the triglyceride fraction. These data indicate that aged mice have an exaggerated metabolic flux response to ER stress, which may indicate that aging renders the UPRER less effective in resolving proteotoxic stress.  相似文献   
994.
Proteins, widely studied as potential biomarkers, play important roles in numerous physiological functions and diseases. Genetic variation may modulate corresponding protein levels and point to the role of these variants in disease pathophysiology. Effects of individual single nucleotide polymorphisms (SNPs) within a gene were analyzed for corresponding plasma protein levels using genome-wide association study (GWAS) genotype data and proteomic panel data with 132 quality-controlled analytes from 521 Caucasian participants in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort. Linear regression analysis detected 112 significant (Bonferroni threshold p = 2.44×10−5) associations between 27 analytes and 112 SNPs. 107 out of these 112 associations were tested in the Indiana Memory and Aging Study (IMAS) cohort for replication and 50 associations were replicated at uncorrected p<0.05 in the same direction of effect as those in the ADNI. We identified multiple novel associations including the association of rs7517126 with plasma complement factor H-related protein 1 (CFHR1) level at p<1.46×10−60, accounting for 40 percent of total variation of the protein level. We serendipitously found the association of rs6677604 with the same protein at p<9.29×10−112. Although these two SNPs were not in the strong linkage disequilibrium, 61 percent of total variation of CFHR1 was accounted for by rs6677604 without additional variation by rs7517126 when both SNPs were tested together. 78 other SNP-protein associations in the ADNI sample exceeded genome-wide significance (5×10−8). Our results confirmed previously identified gene-protein associations for interleukin-6 receptor, chemokine CC-4, angiotensin-converting enzyme, and angiotensinogen, although the direction of effect was reversed in some cases. This study is among the first analyses of gene-protein product relationships integrating multiplex-panel proteomics and targeted genes extracted from a GWAS array. With intensive searches taking place for proteomic biomarkers for many diseases, the role of genetic variation takes on new importance and should be considered in interpretation of proteomic results.  相似文献   
995.
996.
FrpB is an outer membrane transporter from Neisseria meningitidis, the causative agent of meningococcal meningitis. It is a member of the TonB-dependent transporter (TBDT) family and is responsible for iron uptake into the periplasm. FrpB is subject to a high degree of antigenic variation, principally through a region of hypervariable sequence exposed at the cell surface. From the crystal structures of two FrpB antigenic variants, we identify a bound ferric ion within the structure which induces structural changes on binding which are consistent with it being the transported substrate. Binding experiments, followed by elemental analysis, verified that FrpB binds Fe3+ with high affinity. EPR spectra of the bound Fe3+ ion confirmed that its chemical environment was consistent with that observed in the crystal structure. Fe3+ binding was reduced or abolished on mutation of the Fe3+-chelating residues. FrpB orthologs were identified in other Gram-negative bacteria which showed absolute conservation of the coordinating residues, suggesting the existence of a specific TBDT sub-family dedicated to the transport of Fe3+. The region of antigenic hypervariability lies in a separate, external sub-domain, whose structure is conserved in both the F3-3 and F5-1 variants, despite their sequence divergence. We conclude that the antigenic sub-domain has arisen separately as a result of immune selection pressure to distract the immune response from the primary transport function. This would enable FrpB to function as a transporter independently of antibody binding, by using the antigenic sub-domain as a ‘molecular decoy’ to distract immune surveillance.  相似文献   
997.
Abstract

The flexibility of alternating poly (dA—dT) has been investigated by the technique of transient electric dichroism. Rotational relaxation times, which are very sensitive to changes in the end-to-end length of flexible polymers, are determined from the field free dichroism decay curves of four, well defined fragments of poly (dA—dT) ranging in size from 136 to 270 base pairs. Persistence lengths, calculated from the results of Hagerman and Zimm (Biopolymers (1981) 29, 1481–1502), are in the range 200–250 A. This makes alternating dA—dT sequences about twice as flexible as naturally occurring, “random” sequence DNA. Considering a bend around a nucleosome, for example, this difference in persistence length translates to an energy difference between poly (dA—dT) and random sequence DNA of 0. 17 kT/base pair or 1 kcal per 10 base pair stretch. This energy difference is sufficiently large to suggest that dA—dT sequences could serve as markers in DNA packaging, for example, at sites where DNA must tightly bend to accommodate structures.  相似文献   
998.
A well preserved subadult rhino mandible from Mosbach 2 can be attributed toStephanorhinus hundsheimensis based on a metrical and morphological analysis. A comparison to tooth eruption of livingDiceros bicornis suggests an individual age for the animal of about 7 years at death. The described mandible shows a significant tooth anomaly: two teeth occupy the p3 position on each side of the mandible. Comparisons with three younger juvenileStephanorhinus hundsheimensis from Mosbach 2 show the sequence of tooth eruption for the species and allow us to determine that the anomalous teeth are not persistent milk teeth but are supernumerary teeth, which are morphologically intermediate between normal p2 and p3. The animal’s occlusion was compromised to some degree by the anomaly, and the functional disadvantage may have been critical during a harsh period.   相似文献   
999.
1000.
The acid tolerance response (ATR) of log-phase Salmonella typhimurium is induced by acid exposures below pH 4.5 and will protect cells against more extreme acid. Two systems are evident: a transiently induced system dependent on the iron regulator Fur that provides a moderate degree of acid tolerance and a more effective sustained ATR that requires the alternate sigma factor σS encoded by rpoS. Differences between the acid responses of virulent S. typhimurium and the attenuated laboratory strain LT2 were attributed to disparate levels of RpoS caused by different translational starts. The sustained ATR includes seven newly identified acid shock proteins (ASPs) that are dependent upon σS for their synthesis. It is predicted that one or more of these ASPs is essential for the sustained system. The sustained ATR also provided cross-protection to a variety of other environmental stresses (heat, H2O2 and osmolarity); however, adaptation to the other stresses did not provide significant acid tolerance. Therefore, in addition to starvation, acid shock serves as an important signal for inducing general stress resistance. Consistent with this model, σS proved to be induced by acid shock. Our results also revealed a connection between the transient and sustained ATR systems. Mutations in the regulator atbR are known to cause the overproduction of ten proteins, of which one or more can suppress the acid tolerance defect of an rpoS mutant. One member of the AtbR regulon, designated atrB, was found to be co-regulated by σS and AtbR. Both regulators had a negative effect on atrB expression. The results suggest AtrB serves as a link between the sustained and transient ATR systems. When σS concentration are low, a compensatory increase in AtrB is required to engage the transiently induced, RpoS-independent system of acid tolerance. Results also suggest different acid-sensitive targets occur in log-phase versus stationary-phase cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号