首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   9篇
  国内免费   1篇
  2016年   1篇
  2015年   4篇
  2013年   1篇
  2012年   1篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   4篇
  2006年   3篇
  2005年   2篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  1999年   2篇
  1998年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
排序方式: 共有34条查询结果,搜索用时 15 毫秒
11.
12.
Tumor susceptibility gene 101 (TSG101) encodes a host cellular protein that is appropriated by human immunodeficiency virus type 1 (HIV-1) in the budding process of viral particles from infected cells. Variation in the coding or noncoding regions of the gene could potentially affect the degree of TSG101-mediated release of viral particles. While the coding regions of the gene were found to lack nonsynonymous variants, two polymorphic sites in the TSG101 5' area were identified that were associated with the rate of AIDS progression among Caucasians. These single-nucleotide polymorphisms (SNPs), located at positions -183 and +181 relative to the translation start, specify three haplotypes termed A, B, and C, which occur at frequencies of 67%, 21%, and 12%, respectively. Haplotype C is associated with relatively rapid AIDS progression, while haplotype B is associated with slower disease progression. Both effects were dominant over the intermediate haplotype A. The haplotypes also demonstrated parallel effects on the rate of CD4 T-cell depletion and viral load increase over time, as well as a possible influence on HIV-1 infection. The data raise the hypothesis that noncoding variation in TSG101 affects the efficiency of TSG101-mediated release of viral particles from infected cells, thereby altering levels of plasma viral load and subsequent disease progression.  相似文献   
13.
Protein interactions are essential components of signal transduction in cells. With the progress in genome-wide yeast two hybrid screens and proteomics analyses, many protein interaction networks have been generated. These analyses have identified hundreds and thousands of interactions in cells and organisms, creating a challenge for further validation under physiological conditions. The bimolecular fluorescence complementation (BiFC) assay is such an assay that meets this need. The BiFC assay is based on the principle of protein fragment complementation, in which two non-fluorescent fragments derived from a fluorescent protein are fused to a pair of interacting partners. When the two partners interact, the two non-fluorescent fragments are brought into proximity and an intact fluorescent protein is reconstituted. Hence, the reconstituted fluorescent signals reflect the interaction of two proteins under study. Over the past six years, the BiFC assay has been used for visualization of protein interactions in living cells and organisms, including our application of the BiFC assay to the transparent nematode Caenorhabditis elegans. We have demonstrated that BiFC analysis in C. elegans provides a direct means to identify and validate protein interactions in living worms and allows visualization of temporal and spatial interactions. Here, we provide a guideline for the implementation of BiFC analysis in living worms and discuss the factors that are critical for BiFC analysis.  相似文献   
14.
We conducted an outdoor mesocosm experiment of factorial design consisting of three levels of nutrient supply (no nutrient addition and additions of nitrogen and phosphorus in ratios of 10:1 and 45:1) cross-classified with two levels of bluegill (Lepomis macrochirus) (presence and absence). Nutrient supply significantly affected total phosphorus (TP), total nitrogen (TN), TN: TP ratio, turbidity, Secchi depth, phytoplankton chlorophyll, filamentous blue-green algae, periphyton chlorophyll, Asplanchna and non-predatory rotifers. The presence of bluegill significantly increased TP, turbidity, diatoms, unicellular green algae, colonial blue-green algae, filamentous blue-green algae, periphyton chlorophyll, Asplanchna and non-predatory rotifers, and decreased Secchi depth, cladocerans, cyclopoid copepodids, copepod nauplii and chironomid tube densities. Nutrient supply and fish effects were not independent of each other as shown by significant nutrient × fish interaction effects for TP, Secchi depth, filamentous blue-green algae, periphyton chlorophyll, Asplanchna and non-predatory rotifers.  相似文献   
15.
The C-C chemokine receptor 5, 32 base-pair deletion (CCR5-Delta32) allele confers strong resistance to infection by the AIDS virus HIV. Previous studies have suggested that CCR5-Delta32 arose within the past 1,000 y and rose to its present high frequency (5%-14%) in Europe as a result of strong positive selection, perhaps by such selective agents as the bubonic plague or smallpox during the Middle Ages. This hypothesis was based on several lines of evidence, including the absence of the allele outside of Europe and long-range linkage disequilibrium at the locus. We reevaluated this evidence with the benefit of much denser genetic maps and extensive control data. We find that the pattern of genetic variation at CCR5-Delta32 does not stand out as exceptional relative to other loci across the genome. Moreover using newer genetic maps, we estimated that the CCR5-Delta32 allele is likely to have arisen more than 5,000 y ago. While such results can not rule out the possibility that some selection may have occurred at C-C chemokine receptor 5 (CCR5), they imply that the pattern of genetic variation seen at CCR5-Delta32 is consistent with neutral evolution. More broadly, the results have general implications for the design of future studies to detect the signs of positive selection in the human genome.  相似文献   
16.
To assess the intensity of and changes in diagnostic investigations and treatment in the terminal stages of breast cancer 555 patients in the area of Tampere University Central Hospital in whom breast cancer had been diagnosed from 1977 to 1980 were followed up for five years. The case notes for the last visit of 519 patients were analysed. The amount of diagnostic activity was similar for those who died and for the survivors. A higher proportion of women who died than of women who survived received treatment at the last follow up visit, and 2.6 times as many of those dying within one week of the last visit were given chemotherapy as were survivors with recurrent disease. Resources devoted to diagnostic investigations and treatment of cancer in terminally ill patients could be better used for care of the patients. This would be more likely to improve the patients'' quality of life and conserve resources.  相似文献   
17.
The Saccharomyces cerevisiae heat shock protein Hsp31 is a stress-inducible homodimeric protein that is involved in diauxic shift reprogramming and has glyoxalase activity. We show that substoichiometric concentrations of Hsp31 can abrogate aggregation of a broad array of substrates in vitro. Hsp31 also modulates the aggregation of α-synuclein (αSyn), a target of the chaperone activity of human DJ-1, an Hsp31 homolog. We demonstrate that Hsp31 is able to suppress the in vitro fibrillization or aggregation of αSyn, citrate synthase and insulin. Chaperone activity was also observed in vivo because constitutive overexpression of Hsp31 reduced the incidence of αSyn cytoplasmic foci, and yeast cells were rescued from αSyn-generated proteotoxicity upon Hsp31 overexpression. Moreover, we showed that Hsp31 protein levels are increased by H2O2, in the diauxic phase of normal growth conditions, and in cells under αSyn-mediated proteotoxic stress. We show that Hsp31 chaperone activity and not the methylglyoxalase activity or the autophagy pathway drives the protective effects. We also demonstrate reduced aggregation of the Sup35 prion domain, PrD-Sup35, as visualized by fluorescent protein fusions. In addition, Hsp31 acts on its substrates prior to the formation of large aggregates because Hsp31 does not mutually localize with prion aggregates, and it prevents the formation of detectable in vitro αSyn fibrils. These studies establish that the protective role of Hsp31 against cellular stress is achieved by chaperone activity that intervenes early in the protein misfolding process and is effective on a wide spectrum of substrate proteins, including αSyn and prion proteins.  相似文献   
18.

Background

The rapid development of effective medical countermeasures against potential biological threat agents is vital. Repurposing existing drugs that may have unanticipated activities as potential countermeasures is one way to meet this important goal, since currently approved drugs already have well-established safety and pharmacokinetic profiles in patients, as well as manufacturing and distribution networks. Therefore, approved drugs could rapidly be made available for a new indication in an emergency.

Methodology/Principal Findings

A large systematic effort to determine whether existing drugs can be used against high containment bacterial and viral pathogens is described. We assembled and screened 1012 FDA-approved drugs for off-label broad-spectrum efficacy against Bacillus anthracis; Francisella tularensis; Coxiella burnetii; and Ebola, Marburg, and Lassa fever viruses using in vitro cell culture assays. We found a variety of hits against two or more of these biological threat pathogens, which were validated in secondary assays. As expected, antibiotic compounds were highly active against bacterial agents, but we did not identify any non-antibiotic compounds with broad-spectrum antibacterial activity. Lomefloxacin and erythromycin were found to be the most potent compounds in vivo protecting mice against Bacillus anthracis challenge. While multiple virus-specific inhibitors were identified, the most noteworthy antiviral compound identified was chloroquine, which disrupted entry and replication of two or more viruses in vitro and protected mice against Ebola virus challenge in vivo.

Conclusions/Significance

The feasibility of repurposing existing drugs to face novel threats is demonstrated and this represents the first effort to apply this approach to high containment bacteria and viruses.  相似文献   
19.
Both environmental and genetic factors impact lipid traits. Environmental modifiers of known genotype–phenotype associations may account for some of the “missing heritability” of these traits. To identify such modifiers, we genotyped 23 lipid-associated variants identified previously through genome-wide association studies (GWAS) in 2,435 non-Hispanic white, 1,407 non-Hispanic black, and 1,734 Mexican-American samples collected for the National Health and Nutrition Examination Surveys (NHANES). Along with lipid levels, NHANES collected environmental variables, including fat-soluble macronutrient serum levels of vitamin A and E levels. As part of the Population Architecture using Genomics and Epidemiology (PAGE) study, we modeled gene–environment interactions between vitamin A or vitamin E and 23 variants previously associated with high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglyceride (TG) levels. We identified three SNP?×?vitamin A and six SNP?×?vitamin E interactions at a significance threshold of p?<?2.2?×?10?3. The most significant interaction was APOB rs693?×?vitamin E (p?=?8.9?×?10?7) for LDL-C levels among Mexican-Americans. The nine significant interaction models individually explained 0.35–1.61?% of the variation in any one of the lipid traits. Our results suggest that vitamins A and E may modify known genotype–phenotype associations; however, these interactions account for only a fraction of the overall variability observed for HDL-C, LDL-C, and TG levels in the general population.  相似文献   
20.
Recent studies documenting a role for local protein synthesis in synaptic plasticity have lead to interest in the opposing process, protein degradation, as a potential regulator of synaptic function. The ubiquitin-conjugation system identifies, modifies, and delivers proteins to the proteasome for degradation. We found that both the proteasome and ubiquitin are present in the soma and dendrites of hippocampal neurons. As the trafficking of glutamate receptors (GluRs) is thought to underlie some forms of synaptic plasticity, we examined whether blocking proteasome activity affects the agonist-induced internalization of GluRs in cultured hippocampal neurons. Treatment with the glutamate agonist AMPA induced a robust internalization of GluRs. In contrast, brief pretreatment with proteasome inhibitors completely prevented the internalization of GluRs. To distinguish between a role for the proteasome and a possible diminution of the free ubiquitin pool, we expressed a chain elongation defective ubiquitin mutant (UbK48R), which causes premature termination of polyubiquitin chains but, importantly, can serve as a substrate for mono-ubiquitin-dependent processes. Expression of K48R in neurons severely diminished AMPA-induced internalization establishing a role for the proteasome. These data demonstrate the acute (e.g., minutes) regulation of synaptic function by the ubiquitin-proteasome pathway in mammalian neurons.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号