首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3341篇
  免费   343篇
  国内免费   3篇
  3687篇
  2023年   19篇
  2022年   32篇
  2021年   48篇
  2020年   46篇
  2019年   47篇
  2018年   66篇
  2017年   55篇
  2016年   77篇
  2015年   154篇
  2014年   156篇
  2013年   182篇
  2012年   275篇
  2011年   257篇
  2010年   162篇
  2009年   147篇
  2008年   214篇
  2007年   189篇
  2006年   188篇
  2005年   192篇
  2004年   184篇
  2003年   164篇
  2002年   162篇
  2001年   42篇
  2000年   35篇
  1999年   39篇
  1998年   40篇
  1997年   27篇
  1996年   20篇
  1995年   31篇
  1994年   21篇
  1993年   24篇
  1992年   25篇
  1991年   26篇
  1990年   32篇
  1989年   16篇
  1988年   28篇
  1987年   14篇
  1986年   16篇
  1985年   11篇
  1984年   19篇
  1983年   11篇
  1982年   18篇
  1979年   12篇
  1978年   11篇
  1976年   9篇
  1974年   18篇
  1973年   10篇
  1969年   11篇
  1968年   15篇
  1967年   11篇
排序方式: 共有3687条查询结果,搜索用时 15 毫秒
151.
In a field release experiment, rifampicin resistant mutants of two antagonistic plant-associated bacteria were used for seed tuber inoculation of transgenic T4 lysozyme expressing potatoes, transgenic control potatoes and non-transgenic parental potatoes. The T4 lysozyme tolerant Pseudomonas putida QC14-3-8 was originally isolated from the tuber surface (geocaulosphere) of T4 lysozyme producing plants and showed in vitro antibacterial activity to the bacterial pathogen Erwinia carotovora ssp. atroseptica. The T4 lysozyme sensitive Serratia grimesii L16-3-3 was originally isolated from the rhizosphere of parental potatoes and showed in vitro antagonism toward the plant pathogenic fungus Verticillium dahliae. The establishment of the inoculated bacteria in the rhizosphere and geocaulosphere of the different plant lines was monitored over one growing season to assess the effect of T4 lysozyme produced by transgenic potato plants on the survival of both inoculants. Both introduced isolates were able to colonize the rhizo- and geocaulosphere of transgenic plants and non-transgenic parental plants, and established in the rhizosphere at levels of ca. log(10) 5 colony forming units g(-1) fresh weight of root. During flowering of plants, significantly more colony counts of the T4 lysozyme tolerant P. putida were recovered from transgenic T4 lysozyme plants than from the transgenic control and the parental line. At this time, the highest level of T4 lysozyme (% of total soluble protein) was detected. Effects of the inoculants on the indigenous microbial community were monitored by analysis of PCR-amplified fragments of the 16S rRNA genes of the whole bacterial community after separation by denaturing gradient gel electrophoresis (DGGE). At any sampling time, the DGGE pattern of rhizosphere and geocaulosphere communities did not show differences between the inoculated and non-inoculated potatoes. Neither of the introduced strains became a dominant member of the bacterial community. This work was the first approach to assess the establishment of plant growth promoting rhizobacteria and potential biocontrol agents on transgenic plants.  相似文献   
152.
Malondialdehyde-acetaldehyde adducts (MAA) have been implicated in atherosclerosis. The purpose of this study was to investigate the role of MAA in atherosclerotic disease. Serum samples from controls (n = 82) and patients with; non-obstructive coronary artery disease (CAD), (n = 40), acute myocardial infarction (AMI) (n = 42), or coronary artery bypass graft (CABG) surgery due to obstructive multi-vessel CAD (n = 72), were collected and tested for antibody isotypes to MAA-modifed human serum albumin (MAA-HSA). CAD patients had elevated relative levels of IgG and IgA anti-MAA, compared to control patients (p<0.001). AMI patients had a significantly increased relative levels of circulating IgG anti-MAA-HSA antibodies as compared to stable angina (p<0.03) or CABG patients (p<0.003). CABG patients had significantly increased relative levels of circulating IgA anti-MAA-HSA antibodies as compared to non-obstructive CAD (p<0.001) and AMI patients (p<0.001). Additionally, MAA-modified proteins were detected in the tissue of human AMI lesions. In conclusion, the IgM, IgG and IgA anti-MAA-HSA antibody isotypes are differentially and significantly associated with non-obstructive CAD, AMI, or obstructive multi-vessel CAD and may serve as biomarkers of atherosclerotic disease.  相似文献   
153.
154.
The bacterium Thermus thermophilus grows at temperatures up to 85 degrees C and is equipped with thermostable enzymes of biotechnological interest. The recently decoded genomes of two strains of T. thermophilus, HB27 and HB8, each composed of a chromosome and a megaplasmid, must certainly encode specific strategies to encounter the thermophile challenge. Here, a genome comparison was undertaken to distinguish common functions from the flexible gene pool, which gave some clues about the biological traits involved in a thermophile lifestyle. The chromosomes were highly conserved, with about 100 strain-specific genes probably reflecting adaptations to the corresponding biological niche, such as metabolic specialities and distinct cell surface determinates including type IV pili. The two megaplasmids showed an elevated plasticity. Upon comparison and re-examination of their gene content, both megaplasmids seem to be implicated in assisting thermophilic growth: a large portion of their genes are apparently involved in DNA repair functions. About 30 plasmid-encoded genes exhibit sequence and domain composition similarity to a predicted DNA repair system specific for thermophilic Archaea and bacteria. Moreover, the plasmid-encoded carotenoid biosynthesis gene cluster is interlocked with genes involved in UV-induced DNA damage repair. This illustrates the importance of DNA protection and repair at elevated growth temperatures.  相似文献   
155.
A previously developed Agrobacterium tumefaciens-mediated transformation (ATMT) protocol for the plant pathogenic fungus Colletotrichum graminicola led to high rates of tandem integration of the whole Ti-plasmid, and was therefore considered to be unsuitable for the identification of pathogenicity and virulence genes by insertional mutagenesis in this pathogen. We used a modified ATMT protocol with acetosyringone present only during the co-cultivation of C. graminicola and A. tumefaciens. Analysis of 105 single-spore isolates randomly chosen from a collection of approximately 2000 transformants, indicated that almost 70% of the transformants had single T-DNA integrations. Of 500 independent transformants tested, 10 exhibited attenuated virulence in infection assays on whole plants. Microscopic analyses primarily revealed defects at different pre-penetration stages of infection-related morphogenesis. Three transformants were characterized in detail. The identification of the T-DNA integration sites was performed by amplification of genomic DNA ends after endonuclease digestion and polynucleotide tailing. In one transformant, the T-DNA had integrated into the 5'-flank of a gene with similarity to allantoicase genes of other Ascomycota. In the second and third transformants, the T-DNA had integrated into an open reading frame (ORF) and into the 5'-flank of an ORF. In both cases, the ORFs have unknown function.  相似文献   
156.
157.
In this study, the steady and pulsatile flow field with mass transport analysis in an anatomically correct model of coronary artery is simulated numerically using a specific patient data from a 64-multislice computed tomography scanner. It is assumed that the blood flow is laminar and that the Navier-Stokes equations of motion are applied. Downstream of the bifurcation, a strong skewing occurs towards the flow divider walls as a result of branching. For the low-density lipoprotein (LDL) transport analysis where a specific boundary condition at the arterial walls is applied, LDL is generally elevated at locations where shear stress distribution is low, but it does not co-locate at whole domain. This numerical simulation gives an insight, as well as detailed quantitative data, of haemodynamic conditions in the left coronary artery as well as mass transfer patterns for a specific patient.  相似文献   
158.
To deal with different kinds of DNA damages, there are a number of repair pathways that must be carefully orchestrated to guarantee genomic stability. Many proteins that play a role in DNA repair are involved in multiple pathways and need to be tightly regulated to conduct the functions required for efficient repair of different DNA damage types, such as double strand breaks or DNA crosslinks caused by radiation or genotoxins. While most of the factors involved in DNA repair are conserved throughout the different kingdoms, recent results have shown that the regulation of their expression is variable between different organisms. In the following paper, we give an overview of what is currently known about regulating factors and gene expression in response to DNA damage and put this knowledge in context with the different DNA repair pathways in plants. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress.  相似文献   
159.
160.
The composition of the mitochondrial outer membrane is notoriously difficult to deduce by orthology to other organisms, and biochemical enrichments are inevitably contaminated with the closely associated inner mitochondrial membrane and endoplasmic reticulum. In order to identify novel proteins of the outer mitochondrial membrane in Arabidopsis (Arabidopsis thaliana), we integrated a quantitative mass spectrometry analysis of highly enriched and prefractionated samples with a number of confirmatory biochemical and cell biology approaches. This approach identified 42 proteins, 27 of which were novel, more than doubling the number of confirmed outer membrane proteins in plant mitochondria and suggesting novel functions for the plant outer mitochondrial membrane. The novel components identified included proteins that affected mitochondrial morphology and/or segregation, a protein that suggests the presence of bacterial type lipid A in the outer membrane, highly stress-inducible proteins, as well as proteins necessary for embryo development and several of unknown function. Additionally, proteins previously inferred via orthology to be present in other compartments, such as an NADH:cytochrome B5 reductase required for hydroxyl fatty acid accumulation in developing seeds, were shown to be located in the outer membrane. These results also revealed novel proteins, which may have evolved to fulfill plant-specific requirements of the mitochondrial outer membrane, and provide a basis for the future functional characterization of these proteins in the context of mitochondrial intracellular interaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号