首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3336篇
  免费   342篇
  国内免费   2篇
  2023年   16篇
  2022年   28篇
  2021年   48篇
  2020年   46篇
  2019年   47篇
  2018年   66篇
  2017年   55篇
  2016年   77篇
  2015年   154篇
  2014年   156篇
  2013年   182篇
  2012年   275篇
  2011年   257篇
  2010年   162篇
  2009年   147篇
  2008年   214篇
  2007年   189篇
  2006年   188篇
  2005年   192篇
  2004年   184篇
  2003年   164篇
  2002年   162篇
  2001年   42篇
  2000年   35篇
  1999年   39篇
  1998年   40篇
  1997年   27篇
  1996年   20篇
  1995年   31篇
  1994年   21篇
  1993年   24篇
  1992年   25篇
  1991年   26篇
  1990年   32篇
  1989年   16篇
  1988年   28篇
  1987年   14篇
  1986年   16篇
  1985年   11篇
  1984年   19篇
  1983年   11篇
  1982年   18篇
  1979年   12篇
  1978年   11篇
  1976年   9篇
  1974年   18篇
  1973年   10篇
  1969年   11篇
  1968年   15篇
  1967年   11篇
排序方式: 共有3680条查询结果,搜索用时 15 毫秒
131.
132.
In recent years, the availability of reduced representation library (RRL) methods has catalysed an expansion of genome‐scale studies to characterize both model and non‐model organisms. Most of these methods rely on the use of restriction enzymes to obtain DNA sequences at a genome‐wide level. These approaches have been widely used to sequence thousands of markers across individuals for many organisms at a reasonable cost, revolutionizing the field of population genomics. However, there are still some limitations associated with these methods, in particular the high molecular weight DNA required as starting material, the reduced number of common loci among investigated samples, and the short length of the sequenced site‐associated DNA. Here, we present MobiSeq, a RRL protocol exploiting simple laboratory techniques, that generates genomic data based on PCR targeted enrichment of transposable elements and the sequencing of the associated flanking region. We validate its performance across 103 DNA extracts derived from three mammalian species: grey wolf (Canis lupus), red deer complex (Cervus sp.) and brown rat (Rattus norvegicus). MobiSeq enables the sequencing of hundreds of thousands loci across the genome and performs SNP discovery with relatively low rates of clonality. Given the ease and flexibility of MobiSeq protocol, the method has the potential to be implemented for marker discovery and population genomics across a wide range of organisms—enabling the exploration of diverse evolutionary and conservation questions.  相似文献   
133.
Global climate change has profound implications on species distributions and ecosystem functioning. In the coastal zone, ecological responses may be driven by various biogeochemical and physical environmental factors. Synergistic interactions can occur when the combined effects of stressors exceed their individual effects. The Red Sea, characterized by strong gradients in temperature, salinity, and nutrients along the latitudinal axis provides a unique opportunity to study ecological responses over a range of these environmental variables. Using multiple linear regression models integrating in situ, satellite and oceanographic data, we investigated the response of coral reef taxa to local stressors and recent climate variability. Taxa and functional groups responded to a combination of climate (temperature, salinity, air‐sea heat fluxes, irradiance, wind speed), fishing pressure and biogeochemical (chlorophyll a and nutrients ‐ phosphate, nitrate, nitrite) factors. The regression model for each species showed interactive effects of climate, fishing pressure and nutrient variables. The nature of the effects (antagonistic or synergistic) was dependent on the species and stressor pair. Variables consistently associated with the highest number of synergistic interactions included heat flux terms, temperature, and wind speed followed by fishing pressure. Hard corals and coralline algae abundance were sensitive to changing environmental conditions where synergistic interactions decreased their percentage cover. These synergistic interactions suggest that the negative effects of fishing pressure and eutrophication may exacerbate the impact of climate change on corals. A high number of interactions were also recorded for algae, however for this group, synergistic interactions increased algal abundance. This study is unique in applying regression analysis to multiple environmental variables simultaneously to understand stressor interactions in the field. The observed responses have important implications for understanding climate change impacts on marine ecosystems and whether managing local stressors, such as nutrient enrichment and fishing activities, may help mitigate global drivers of change.  相似文献   
134.
Inspired by marine compounds the derivatization of the natural pyrrolo[2,3-d]pyrimidine lead scaffold led to a series of novel compounds targeting the histamine H3 receptor. The focus was set on improved binding towards the receptor and to establish an initial structure-activity relationship for this compound class based on the lead structure (compound V, Ki value of 126 nM). As highest binding affinities were found with 1,4-bipiperidines as basic part of the ligands, further optimization was focused on 4-([1,4′-bipiperidin]-1′-yl)-pyrrolo[2,3-d]pyrimidines. Related pyrrolo[2,3-d]pyrimidines that were isolated from marine sponges like 4-amino-5-bromopyrrolo[2,3-d]pyrimidine (compound III), showed variations in halogenation pattern, though in a next step the impact of halogenation at 2-position was evaluated. The chloro variations did not improve the affinity compared to the dehalogenated compounds. However, the simultaneous introduction of lipophilic cores with electron-withdrawing substitution patterns in 7-position and dehalogenation at 2-position (11b, 12b) resulted in compounds with significantly higher binding affinities (Ki values of 7 nM and 6 nM, respectively) than the initial lead structure compound V. The presented structures allow for a reasonable structure-activity relationship of pyrrolo[2,3-d]pyrimidines as histamine H3 receptor ligands and yielded novel lead structures within the natural compound library against this target.  相似文献   
135.
A fundamental part of the quantitative genetic theory deals with the partitioning of the phenotypic variance into additive genetic and environmental components. During interaction with conspecifics, the interaction partner becomes a part of the environment from the perspective of the focal individual. If the interaction effects have a genetic basis, they are called indirect genetic effects (IGEs) and can evolve along with direct genetic effects. Sexual reproduction is a classic context where potential conflict between males and females can arise from trade‐offs between current and future investments. We studied five female fecundity traits, egg length and number, egg pod length and number and latency to first egg pod, and estimated the direct and IGEs using a half‐sib breeding design in the grasshopper Chorthippus biguttulus. We found that the male IGEs were an order of magnitude lower than the direct genetic effects and were not significantly different from zero. However, there was some indication that IGEs were larger shortly after mating, consistent with the idea that IGEs fade with time after interaction. Female direct heritabilities were moderate to low. Simulation shows that the variance component estimates can appear larger with less data, calling for care when interpreting variance components estimated with low power. Our results illustrate that the contribution of male IGEs is overall low on the phenotypic variance of female fecundity traits. Thus, even in the relevant context of sexual conflict, the influence of male IGEs on the evolutionary trajectory of female reproductive traits is likely to be small.  相似文献   
136.
137.
Vaccinia virus (VV) infection is known to inhibit dendritic cells (DC) functions in vitro. Paradoxically, VV is also highly immunogenic and thus has been used as a vaccine. In the present study, we investigated the effects of an in vivo VV infection on DC function by focusing on early innate immunity. Our data indicated that DC are activated upon in vivo VV infection of mice. Splenic DC from VV-infected mice expressed elevated levels of MHC class I and co-stimulatory molecules on their cell surface and exhibited the enhanced potential to produce cytokines upon LPS stimulation. DC from VV-infected mice also expressed a high level of interferon-beta. However, a VV infection resulted in the down-regulation of MHC class II expression and the impairment of antigen presentation to CD4 T cells by DC. Thus, during the early stage of a VV infection, although DC are impaired in some of the critical antigen presentation functions, they can promote innate immune defenses against viral infection.  相似文献   
138.
Sexual selection has repeatedly been shown to be the probable driving force behind the positive Darwinian evolution of genes affecting male reproductive success. Here we compare the sequence evolution of the sperm ligand zonadhesin with body mass dimorphism in primates. In contrast to previous related studies, the present approach takes into account not only catarrhine primates, but also platyrrhines and lemurs. In detail, we analyze the sequence evolution of concatenated zonadhesin fragments (555 bp) of four Lemuroidea, five Platyrrhini, and seven Catarrhini, using the rate ratio of nonsynonymous to synonymous substitutions (dn/ds=omega). Unexpectedly, subsequent regression analyzes between omega estimates for the terminal branches of a primate phylogeny and residual male body mass reveal that sequence evolution of zonadhesin decreases with increasing sexual dimorphism in body weight. Mapping published mating system classifications onto these results illustrates that unimale breeding species show a tendency for rather slow sequence evolution of zonadhesin and comparably pronounced sexual dimorphism in body weight. Female choice and sperm competition can be assumed to drive the evolution of zonadhesin. We speculate that the level of sperm competition is lower in more sexually dimorphic primates because males of these species monopolize access to fertile females more successfully. Thus, variation in sperm competition may be driving the observed negative correlation of sequence evolution and sexual dimorphism in body weight.  相似文献   
139.
Differential centrifugation of Triton X-100 or CHAPS lysates from control and cholesterol (CH)-depleted MDCK II cells, segregated integral tight junction (TJ) proteins associated with detergent-resistant membranes (DRMs) into two groups. Group A proteins (occludin, claudin-2 and -3) were detected in large, intermediate and small aggregates in both detergents, whereas group B proteins (claudin-1, -4 and -7) were observed in small aggregates in TX-100 and in intermediate and small aggregates in CHAPS. Depletion of CH altered the distribution of group A and B proteins among the three size categories in a detergent-specific manner. In lysates produced with octyl glucoside, a detergent that selectively extracts proteins from DRMs, group A proteins were undetectable in large aggregates and CH depletion did not alter the distribution of either group A or B proteins in intermediate or small aggregates. Neither occludin (group A) nor claudin-1 (group B) was in intimate enough contact with CH to be cross-linked to [(3)H]-photo-cholesterol. However, antibodies to either TJ protein co-immunoprecipitated caveolin-1, a CH-binding protein. Unlike claudins, occludin's presence in TJs and DRMs did not require palmitoylation. Equilibrium density centrifugation on discontinuous OptiPrep gradients revealed detergent-related differences in the densities of TJ-bearing DRMs. There was little or no change in those densities after CH depletion. Removing CH from the plasma membrane increased tyrosine and threonine phosphorylation of occludin, and transepithelial electrical resistance (TER) within 30 min. After 2 h of CH efflux, phospho-occludin levels and TER fell below control values. We conclude that the association of integral TJ proteins with DRMS, pelleted at low speeds, is partially CH-dependent. However, the buoyant density of TJ-associated DRMs is a function of the detergent used and is insensitive to decreases in CH.  相似文献   
140.
ATP synthases convert an electrochemical proton gradient into rotational movement to produce the ubiquitous energy currency adenosine triphosphate. Tension generated by the rotational torque is compensated by the stator. For this task, a peripheral stalk flexibly fixes the hydrophilic catalytic part F1 to the membrane integral proton conducting part F(O) of the ATP synthase. While in eubacteria a homodimer of b subunits forms the peripheral stalk, plant chloroplasts and cyanobacteria possess a heterodimer of subunits I and II. To better understand the functional and structural consequences of this unique feature of photosynthetic ATP synthases, a procedure was developed to purify subunit I from spinach chloroplasts. The secondary structure of subunit I, which is not homologous to bacterial b subunits, was compared to heterologously expressed subunit II using CD and FTIR spectroscopy. The content of alpha-helix was determined by CD spectroscopy to 67% for subunit I and 41% for subunit II. In addition, bioinformatics was applied to predict the secondary structure of the two subunits and the location of the putative coiled-coil dimerization regions. Three helical domains were predicted for subunit I and only two uninterrupted domains for the shorter subunit II. The predicted length of coiled-coil regions varied between different species and between subunits I and II.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号