全文获取类型
收费全文 | 2789篇 |
免费 | 272篇 |
国内免费 | 2篇 |
专业分类
3063篇 |
出版年
2023年 | 21篇 |
2022年 | 27篇 |
2021年 | 45篇 |
2020年 | 40篇 |
2019年 | 47篇 |
2018年 | 48篇 |
2017年 | 48篇 |
2016年 | 68篇 |
2015年 | 141篇 |
2014年 | 140篇 |
2013年 | 165篇 |
2012年 | 249篇 |
2011年 | 232篇 |
2010年 | 140篇 |
2009年 | 131篇 |
2008年 | 199篇 |
2007年 | 175篇 |
2006年 | 162篇 |
2005年 | 167篇 |
2004年 | 161篇 |
2003年 | 148篇 |
2002年 | 149篇 |
2001年 | 29篇 |
2000年 | 17篇 |
1999年 | 25篇 |
1998年 | 33篇 |
1997年 | 19篇 |
1996年 | 18篇 |
1995年 | 28篇 |
1994年 | 15篇 |
1993年 | 20篇 |
1992年 | 17篇 |
1991年 | 15篇 |
1990年 | 18篇 |
1989年 | 9篇 |
1988年 | 11篇 |
1987年 | 6篇 |
1986年 | 10篇 |
1984年 | 6篇 |
1983年 | 4篇 |
1982年 | 5篇 |
1981年 | 6篇 |
1979年 | 4篇 |
1978年 | 4篇 |
1974年 | 4篇 |
1969年 | 5篇 |
1967年 | 2篇 |
1963年 | 2篇 |
1962年 | 3篇 |
1955年 | 2篇 |
排序方式: 共有3063条查询结果,搜索用时 15 毫秒
21.
Omega-piperidinoalkanamine derivatives with fluorescent moieties (2-cyanoisoindol-1-yl, 7-nitrobenzofurazan-4-yl) have been synthesized starting from piperidine in three steps. The compounds display moderate to good histamine hH(3) receptor affinities with K(i) values ranging from 178 to 11nM. The new compounds may act as tools for identification and understanding of the binding site on the histamine H(3) receptor. 相似文献
22.
Karsten Schnatbaum Victor Solis‐Mezarino Daniil Pokrovsky Frederike Schfer Dennis Nagl Lars Hornberger Johannes Zerweck Tobias Knaute Julia Avramova‐Nehmer Mike Schutkowski Veit Hornung Holger Wenschuh Moritz Carl Vlker‐Albert Axel Imhof Ulf Reimer 《Proteomics》2020,20(10)
Targeted proteomics depends on the availability of stable isotope labeled (SIL) peptide standards, which for absolute protein quantification need to be absolutely quantified. In the present study, three new approaches for absolute quantification of SIL peptides are developed. All approaches rely on a quantification tag (Qtag) with a specific UV absorption. The Qtag is attached to the peptide during synthesis and is removed by tryptic digestion under standard proteomics workflow conditions. While one quantification method (method A) is designed to allow the fast and economic production of absolutely quantified SIL peptides, two other methods (methods B and C) are developed to enable the straightforward re‐quantification of SIL peptides after reconstitution to control and monitor known problems related to peptide solubility, precipitation, and adhesion to vials. All methods yield consistent results when compared to each other and when compared to quantification by amino acid analysis. The precise quantitation methods are used to characterize the in vivo specificity of the H3 specific histone methyltransferase EZH2. 相似文献
23.
24.
25.
Leaf thionins, a novel class of putative defence factors 总被引:1,自引:0,他引:1
Leaf thionins of barley have been identified as a novel class of highly abundant polypeptides with antifungal activity, which are present in walls and vacuoles of barley leaf cells. Similar thionins occur not only in monocotyledonous but also in various dicotyledonous plants. The leaf thionins of barley are encoded by a complex multigene family, which consists of at least 50–100 members per haploid genome. The toxicity of these thionins for plant pathogenic fungi and the fact that their synthesis can also be triggered by pathogens strongly suggest that leaf thionins are involved in the mechanism of plant defence against microbiol infection. 相似文献
26.
Pedro M. F. Sousa Marco A. M. Videira Thomas Vorburger Sara T. N. Silva James W. Moir Julia Steuber Ana M. P. Melo 《Archives of microbiology》2013,195(3):211-217
Neisseria meningitidis is a pathogenic bacterium responsible for meningitis. The mechanisms underlying the control of Na+ transmembrane movement, presumably important to pathogenicity, have been barely addressed. To elucidate the function of the components of the Na+ transport system in N. meningitidis, an open reading frame from the genome of this bacterium displaying similarity with the NhaE type of Na+/H+ antiporters was expressed in Escherichia coli and characterized for sodium transport ability. The N. meningitidis antiporter (NmNhaE) was able to complement an E. coli strain devoid of Na+/H+ antiporters (KNabc) respecting the ability to grow in the presence of NaCl and LiCl. Ion transport assays in everted vesicles prepared from KNabc expressing NmNhaE from a plasmid confirmed its ability to translocate Na+ and Li+. Here is presented the characterization of the first NhaE from a pathogen, an important contribution to the comprehension of sodium ion metabolism in this kind of microorganisms. 相似文献
27.
Relationship between the structure of amphiphilic copolymers and their ability to disturb lipid bilayers 总被引:2,自引:0,他引:2
Demina T Grozdova I Krylova O Zhirnov A Istratov V Frey H Kautz H Melik-Nubarov N 《Biochemistry》2005,44(10):4042-4054
Nonionic amphiphiles and particularly block copolymers of ethylene oxide and propylene oxide (Pluronics) cause pronounced chemosensitization of tumor cells that exhibit multiple resistance to antineoplastic drugs. This effect is due to inhibition of P-glycoprotein (P-gp) responsible for drug efflux. It was suggested that the inhibition of P-gp might be due to changes in its lipid surrounding. Indeed, high dependence of P-gp activity on the membrane microviscosity was demonstrated [Regev et al. (1999) Eur. J. Biochem. 259, 18-24], suggesting that the ability of Pluronics to affect the P-gp activity is mediated by their effect on the membrane structure. We have found recently that adsorption of Pluronics on lipid bilayers induced considerable disturbance of the lipid packing [Krylova et al. (2003) Chemistry 9, 3930-3936]. In the present paper, we studied 19 amphiphilic copolymers, including newly synthesized hyperbranched polyglycerols, Pluronic and Brij surfactants, for their ability to accelerate flip-flop and permeation of antitumor drug doxorubicin (DOX) in liposomes. It was found that not only bulk hydrophobicity but also the chemical microstructure of the copolymer determines its membrane disturbing ability. Copolymers containing polypropylene oxide caused higher acceleration of flip-flop and DOX permeation than polysurfactants containing aliphatic chains. The effects of copolymers containing hyperbranched polyglycerol "corona" were more pronounced, as compared to the copolymers with linear poly(ethylene oxide) chains, indicating that a bulky hydrophilic block induces additional disturbances in the lipid bilayer. A good correlation between the copolymer flippase activity and a linear combination of copolymer bulk hydrophobicity and the van der Waals volume of its hydrophobic block was found. The relationship between the structure of a copolymer and its ability to disturb lipid membranes presented in this paper may be useful for the design of novel amphiphilic copolymers capable of affecting the activity of membrane transporters in living cells. 相似文献
28.
Esther Nkuipou-Kenfack Flore Duranton Nathalie Gayrard àngel Argilés Ulrika Lundin Klaus M. Weinberger Mohammed Dakna Christian Delles William Mullen Holger Husi Julie Klein Thomas Koeck Petra Zürbig Harald Mischak 《PloS one》2014,9(5)
Chronic kidney disease (CKD) is part of a number of systemic and renal diseases and may reach epidemic proportions over the next decade. Efforts have been made to improve diagnosis and management of CKD. We hypothesised that combining metabolomic and proteomic approaches could generate a more systemic and complete view of the disease mechanisms. To test this approach, we examined samples from a cohort of 49 patients representing different stages of CKD. Urine samples were analysed for proteomic changes using capillary electrophoresis-mass spectrometry and urine and plasma samples for metabolomic changes using different mass spectrometry-based techniques. The training set included 20 CKD patients selected according to their estimated glomerular filtration rate (eGFR) at mild (59.9±16.5 mL/min/1.73 m2; n = 10) or advanced (8.9±4.5 mL/min/1.73 m2; n = 10) CKD and the remaining 29 patients left for the test set. We identified a panel of 76 statistically significant metabolites and peptides that correlated with CKD in the training set. We combined these biomarkers in different classifiers and then performed correlation analyses with eGFR at baseline and follow-up after 2.8±0.8 years in the test set. A solely plasma metabolite biomarker-based classifier significantly correlated with the loss of kidney function in the test set at baseline and follow-up (ρ = −0.8031; p<0.0001 and ρ = −0.6009; p = 0.0019, respectively). Similarly, a urinary metabolite biomarker-based classifier did reveal significant association to kidney function (ρ = −0.6557; p = 0.0001 and ρ = −0.6574; p = 0.0005). A classifier utilising 46 identified urinary peptide biomarkers performed statistically equivalent to the urinary and plasma metabolite classifier (ρ = −0.7752; p<0.0001 and ρ = −0.8400; p<0.0001). The combination of both urinary proteomic and urinary and plasma metabolic biomarkers did not improve the correlation with eGFR. In conclusion, we found excellent association of plasma and urinary metabolites and urinary peptides with kidney function, and disease progression, but no added value in combining the different biomarkers data. 相似文献
29.
Background
Since the first fungal genome sequences became available, investigators have been employing comparative genomics to understand how fungi have evolved to occupy diverse ecological niches. The secretome, i.e. the entirety of all proteins secreted by an organism, is of particular importance, as by these proteins fungi acquire nutrients and communicate with their surroundings.Results
It is generally assumed that fungi with similar nutritional lifestyles have similar secretome compositions. In this study, we test this hypothesis by annotating and comparing the soluble secretomes, defined as the sets of proteins containing classical signal peptides but lacking transmembrane domains of fungi representing a broad diversity of nutritional lifestyles. Secretome size correlates with phylogeny and to a lesser extent with lifestyle. Plant pathogens and saprophytes have larger secretomes than animal pathogens. Small secreted cysteine-rich proteins (SSCPs), which may comprise many effectors important for the interaction of plant pathogens with their hosts, are defined here to have a mature length of ≤ 300 aa residues, at least four cysteines, and a total cysteine content of ≥5%. SSCPs are found enriched in the secretomes of the Pezizomycotina and Basidiomycota in comparison to Saccharomycotina. Relative SSCP content is noticeably higher in plant pathogens than in animal pathogens, while saprophytes were in between and closer to plant pathogens. Expansions and contractions of gene families and in the number of occurrences of functional domains are largely lineage specific, e.g. contraction of glycoside hydrolases in Saccharomycotina, and are only weakly correlated with lifestyle. However, within a given lifestyle a few general trends exist, such as the expansion of secreted family M14 metallopeptidases and chitin-binding proteins in plant pathogenic Pezizomycotina.Conclusions
While the secretomes of fungi with similar lifestyles share certain characteristics, the expansion and contraction of gene families is largely lineage specific, and not shared among all fungi of a given lifestyle.Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-722) contains supplementary material, which is available to authorized users. 相似文献30.
H Attar K Bedard E Migliavacca M Gagnebin Y Dupré P Descombes C Borel S Deutsch H Prokisch T Meitinger D Mehta E Wichmann JM Delabar ET Dermitzakis KH Krause SE Antonarakis 《PloS one》2012,7(8):e43566
Natural variation in DNA sequence contributes to individual differences in quantitative traits. While multiple studies have shown genetic control over gene expression variation, few additional cellular traits have been investigated. Here, we investigated the natural variation of NADPH oxidase-dependent hydrogen peroxide (H2O2 release), which is the joint effect of reactive oxygen species (ROS) production, superoxide metabolism and degradation, and is related to a number of human disorders. We assessed the normal variation of H2O2 release in lymphoblastoid cell lines (LCL) in a family-based 3-generation cohort (CEPH-HapMap), and in 3 population-based cohorts (KORA, GenCord, HapMap). Substantial individual variation was observed, 45% of which were associated with heritability in the CEPH-HapMap cohort. We identified 2 genome-wide significant loci of Hsa12 and Hsa15 in genome-wide linkage analysis. Next, we performed genome-wide association study (GWAS) for the combined KORA-GenCord cohorts (n = 279) using enhanced marker resolution by imputation (>1.4 million SNPs). We found 5 significant associations (p<5.00×10−8) and 54 suggestive associations (p<1.00×10−5), one of which confirmed the linked region on Hsa15. To replicate our findings, we performed GWAS using 58 HapMap individuals and ∼2.1 million SNPs. We identified 40 genome-wide significant and 302 suggestive SNPs, and confirmed genome signals on Hsa1, Hsa12, and Hsa15. Genetic loci within 900 kb from the known candidate gene p67phox on Hsa1 were identified in GWAS in both cohorts. We did not find replication of SNPs across all cohorts, but replication within the same genomic region. Finally, a highly significant decrease in H2O2 release was observed in Down Syndrome (DS) individuals (p<2.88×10−12). Taken together, our results show strong evidence of genetic control of H2O2 in LCL of healthy and DS cohorts and suggest that cellular phenotypes, which themselves are also complex, may be used as proxies for dissection of complex disorders. 相似文献