首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2749篇
  免费   269篇
  国内免费   2篇
  3020篇
  2023年   19篇
  2022年   28篇
  2021年   43篇
  2020年   40篇
  2019年   47篇
  2018年   48篇
  2017年   48篇
  2016年   67篇
  2015年   137篇
  2014年   140篇
  2013年   162篇
  2012年   247篇
  2011年   234篇
  2010年   141篇
  2009年   133篇
  2008年   195篇
  2007年   172篇
  2006年   160篇
  2005年   165篇
  2004年   159篇
  2003年   146篇
  2002年   144篇
  2001年   26篇
  2000年   15篇
  1999年   23篇
  1998年   33篇
  1997年   19篇
  1996年   18篇
  1995年   28篇
  1994年   13篇
  1993年   20篇
  1992年   16篇
  1991年   15篇
  1990年   18篇
  1989年   8篇
  1988年   10篇
  1987年   6篇
  1986年   8篇
  1984年   6篇
  1983年   4篇
  1982年   5篇
  1981年   5篇
  1979年   4篇
  1978年   4篇
  1974年   4篇
  1969年   5篇
  1967年   2篇
  1963年   2篇
  1962年   3篇
  1955年   2篇
排序方式: 共有3020条查询结果,搜索用时 15 毫秒
71.
Variability in xylem anatomy is of interest to plant scientists because of the role water transport plays in plant performance and survival. Insights into plant adjustments to changing environmental conditions have mainly been obtained through structural and functional comparative studies between taxa or within taxa on contrasting sites or along environmental gradients. Yet, a gap exists regarding the study of hydraulic adjustments in response to environmental changes over the lifetimes of plants. In trees, dated tree-ring series are often exploited to reconstruct dynamics in ecological conditions, and recent work in which wood-anatomical variables have been used in dendrochronology has produced promising results. Environmental signals identified in water-conducting cells carry novel information reflecting changes in regional conditions and are mostly related to short, sub-annual intervals. Although the idea of investigating environmental signals through wood anatomical time series goes back to the 1960s, it is only recently that low-cost computerized image-analysis systems have enabled increased scientific output in this field. We believe that the study of tree-ring anatomy is emerging as a promising approach in tree biology and climate change research, particularly if complemented by physiological and ecological studies. This contribution presents the rationale, the potential, and the methodological challenges of this innovative approach.  相似文献   
72.
Sondermann H  Kuriyan J 《Cell》2005,121(2):158-160
In this issue of Cell, report that the C2 domain of the serine/threonine protein kinase Cdelta is a phosphotyrosine binding domain and present the crystal structure of this C2 domain bound to a peptide containing phosphotyrosine. Prior to this work, C2 domains were thought to bind only to phospholipids or to unphosphorylated proteins, and the SH2 and PTB domains were the only signaling domains known to recognize phosphotyrosine. This new role for the C2 domain links phosphotyrosine recognition directly to serine/threonine kinase activity and reveals an unexpected mechanism for crosstalk between distinct signaling pathways.  相似文献   
73.
Crucial steps in geochemical cycles are in many cases performed by more than one group of microorganisms, but the significance of this functional redundancy with respect to ecosystem functioning is poorly understood. Ammonia-oxidizing archaea (AOA) and their bacterial counterparts (AOB) are a perfect system to address this question: although performing the same transformation step, they belong to well-separated phylogenetic groups. Using pig manure amended with different concentrations of sulfadiazine (SDZ), an antibiotic that is frequently used in veterinary medicine, it was possible to affect AOB and AOA to different degrees. Addition of manure stimulated growth of AOB in both soils and, interestingly, also growth of AOA was considerably stimulated in one of the soils. The antibiotic treatments decreased the manure effect notably on AOB, whereas AOA were affected to a lower extent. Model calculations concerning the respective proportions of AOA and AOB in ammonia oxidation indicate a substantial contribution of AOA in one of the soils that further increased under the influence of SDZ, hence indicating functional redundancy between AOA and AOB.  相似文献   
74.
75.
Although it is generally assumed that mobile genetic elements facilitate the adaptation of microbial communities to environmental stresses, environmental data supporting this assumption are rare. In this study, river sediment samples taken from two mercury-polluted (A and B) and two nonpolluted or less-polluted (C and D) areas of the river Nura (Kazakhstan) were analyzed by PCR for the presence and abundance of mercury resistance genes and of broad-host-range plasmids. PCR-based detection revealed that mercury pollution corresponded to an increased abundance of mercury resistance genes and of IncP-1β replicon-specific sequences detected in total community DNA. The isolation of IncP-1β plasmids from contaminated sediments was attempted in order to determine whether they carry mercury resistance genes and thus contribute to an adaptation of bacterial populations to Hg pollution. We failed to detect IncP-1β plasmids in the genomic DNA of the cultured Hg-resistant bacterial isolates. However, without selection for mercury resistance, three different IncP-1β plasmids (pTP6, pTP7, and pTP8) were captured directly from contaminated sediment slurry in Cupriavidus necator JMP228 based on their ability to mobilize the IncQ plasmid pIE723. These plasmids hybridized with the merRTΔP probe and conferred Hg resistance to their host. A broad host range and high stability under conditions of nonselective growth were observed for pTP6 and pTP7. The full sequence of plasmid pTP6 was determined and revealed a backbone almost identical to that of the IncP-1β plasmids R751 and pB8. However, this is the first example of an IncP-1β plasmid which had acquired only a mercury resistance transposon but no antibiotic resistance or biodegradation genes. This transposon carries a rather complex set of mer genes and is inserted between Tra1 and Tra2.  相似文献   
76.
77.
78.
ATP synthases - rotary nano machines - consist of two major parts, F(O) and F(1), connected by two stalks: the central and the peripheral stalk. In spinach chloroplasts, the central stalk (subunits gamma, epsilon) forms with the cylinder of subunits III the rotor and transmits proton motive force from F(O) to F(1), inducing conformational changes of the catalytic centers in F(1). The epsilon subunit is an important regulator affecting adjacent subunits as well as the activity of the whole protein complex. Using a combination of chemical cross-linking and mass spectrometry, we monitored interactions of subunit epsilon in spinach chloroplast ATP synthase with III and gamma. Onto identification of interacting residues in subunits epsilon and III, one cross-link defined the distance between epsilon-Cys6 and III-Lys48 to be 9.4 A at minimum. epsilon-Cys6 was competitively cross-linked with subunit gamma. Altered cross-linking yields revealed the impact of nucleotides and Mg(2+) on cross-linking of subunit epsilon. The presence of nucleotides apparently induced a displacement of the N-terminus of subunit epsilon, which separated epsilon-Cys6 from both, III-Lys48 and subunit gamma, and thus decreasing the yield of the cross-linked subunits epsilon and gamma as well as epsilon and III. However, increasing concentrations of the cofactor Mg(2+) favoured cross-linking of epsilon-Cys6 with subunit gamma instead of III-Lys48 indicating an approximation of subunits gamma and epsilon and a separation from III-Lys48.  相似文献   
79.
The bacterial second messenger bis-(3'-5') cyclic dimeric guanosine monophosphate (c-di-GMP) has emerged as a central regulator for biofilm formation. Increased cellular c-di-GMP levels lead to stable cell attachment, which in Pseudomonas fluorescens requires the transmembrane receptor LapD. LapD exhibits a conserved and widely used modular architecture containing a HAMP domain and degenerate diguanylate cyclase and phosphodiesterase domains. c-di-GMP binding to the LapD degenerate phosphodiesterase domain is communicated via the HAMP relay to the periplasmic domain, triggering sequestration of the protease LapG, thus preventing cleavage of the surface adhesin LapA. Here, we elucidate the molecular mechanism of autoinhibition and activation of LapD based on structure-function analyses and crystal structures of the entire periplasmic domain and the intracellular signaling unit in two different states. In the absence of c-di-GMP, the intracellular module assumes an inactive conformation. Binding of c-di-GMP to the phosphodiesterase domain disrupts the inactive state, permitting the formation of a trans-subunit dimer interface between adjacent phosphodiesterase domains via interactions conserved in c-di-GMP-degrading enzymes. Efficient mechanical coupling of the conformational changes across the membrane is realized through an extensively domain-swapped, unique periplasmic fold. Our structural and functional analyses identified a conserved system for the regulation of periplasmic proteases in a wide variety of bacteria, including many free-living and pathogenic species.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号