首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2786篇
  免费   275篇
  国内免费   2篇
  3063篇
  2023年   19篇
  2022年   27篇
  2021年   42篇
  2020年   40篇
  2019年   47篇
  2018年   48篇
  2017年   48篇
  2016年   67篇
  2015年   138篇
  2014年   138篇
  2013年   161篇
  2012年   246篇
  2011年   231篇
  2010年   140篇
  2009年   132篇
  2008年   194篇
  2007年   171篇
  2006年   161篇
  2005年   168篇
  2004年   159篇
  2003年   146篇
  2002年   145篇
  2001年   28篇
  2000年   18篇
  1999年   25篇
  1998年   36篇
  1997年   19篇
  1996年   18篇
  1995年   30篇
  1994年   13篇
  1993年   21篇
  1992年   19篇
  1991年   17篇
  1990年   22篇
  1989年   13篇
  1988年   11篇
  1987年   12篇
  1986年   10篇
  1985年   3篇
  1984年   7篇
  1983年   5篇
  1982年   6篇
  1981年   5篇
  1979年   5篇
  1978年   6篇
  1974年   5篇
  1969年   5篇
  1963年   2篇
  1962年   3篇
  1955年   2篇
排序方式: 共有3063条查询结果,搜索用时 31 毫秒
991.
DNA polymerase zeta catalytic subunit REV3 is known to play an important role in the repair of DNA damage induced by cross-linking and methylating agents. Here, we demonstrate that in Arabidopsis (Arabidopsis thaliana), the basic polymerase activity of REV3 is essential for resistance protection against these different types of damaging agents. Interestingly, its processivity is mainly required for resistance to interstrand and intrastrand cross-linking agents, but not alkylating agents. To better define the role of REV3 in relation to other key factors involved in DNA repair, we perform epistasis analysis and show that REV3-mediated resistance to DNA-damaging agents is independent of the replication damage checkpoint kinase ataxia telangiectasia-mutated and rad3-related homolog. REV3 cooperates with the endonuclease MMS and UV-sensitive protein81 in response to interstrand cross links and alkylated bases, whereas it acts independently of the ATP-dependent DNA helicase RECQ4A. Taken together, our data show that four DNA intrastrand cross-link subpathways exist in Arabidopsis, defined by ATP-dependent DNA Helicase RECQ4A, MMS and UV-sensitive protein81, REV3, and the ATPase Radiation Sensitive Protein 5A.The DNA of all living organisms is constantly exposed to damaging factors, and therefore a number of DNA damage repair and bypass mechanisms have evolved. DNA lesions that interfere with the replication machinery constitute a particular challenge for cells (Schröpfer et al., 2014a); if not repaired in a timely manner, such damage can result in the stalling or collapse of replication forks, which in turn can lead to cell death. Furthermore, one-sided double-strand breaks (DSBs) can occur when the replication fork encounters a single-strand break. Lesions within one DNA strand, such as alkylations or DNA intrastrand cross links, can be bypassed by postreplicative repair (PRR), a process that is best understood in yeast (Saccharomyces cerevisiae). This mechanism does not lead to repair of the lesion but prevents fatal long-lasting stalling of the replication fork. PRR can be divided into two branches: the error-prone pathway and the error-free pathway (for review, see Goodman and Woodgate, 2013; Haynes et al., 2015; Jansen et al., 2015). It is known from yeast that both branches of PRR are controlled by the Radiation sensitivity protein6 (Rad6) and Mms-Ubc13 E3 ubiquitin-conjugating enzyme complexes, which ubiquitinate the replicative processivity factor Proliferating Cellular Nuclear Antigen1. The monoubiquitination of PCNA at Lys-164 by Rad6-Rad18 initiates the error-prone pathway, whereas polyubiquitination additionally requires Mms2, Ubc13, and Rad5, and triggers the error-free PRR branch (Hoege et al., 2002; Moldovan et al., 2007; Lee and Myung, 2008). There are two possible competing models postulated for the error-free bypass of lesions at the replication fork, both of which depend on template-switch mechanisms; if the lesion concerns only one of the two sister strands, the undamaged strand can be used as the template for bypassing the lesion. One of the two models features the so-called overshoot synthesis, whereby the newly synthesized strand on the undamaged parental strand is elongated further than the strand blocked by the lesion. Regression of the replication fork then leads to the formation of a special type of four-way junction called a chicken-foot structure. This regression mechanism is thought to be accomplished by helicases, such as the RecQ helicase Bloom Syndrome Protein (BLM) in humans (Croteau et al., 2014). AtRECQ4A is the respective BLM homolog in Arabidopsis (Arabidopsis thaliana), and this enzyme has the ability to regress replication forks in vitro (Hartung et al., 2007, 2008; Schröpfer et al., 2014b). The second error-free subpathway entails invasion of the newly synthesized strand on the blocked sister chromatid into the complementary newly replicated strand on the other sister chromatid. Such a step forms a displacement loop-like structure in which synthesis over the damaged region can occur. In yeast, both error-free pathways are dependent on the multifunctional protein Rad5, which is known to recruit PRR factors and also exhibits helicase activity itself (Blastyák et al., 2007). We previously identified AtRAD5A as a functional Arabidopsis homolog of Rad5 (Chen et al., 2008). Interestingly, AtRAD5A is required for efficient repair by homologous recombination via the synthesis-dependent strand-annealing mechanism, a pathway that in some steps is related to the invasion model of PRR (Mannuss et al., 2010).The error-prone pathway is based on the function of translesion synthesis (TLS) polymerases, which promote replication through DNA lesions (Prakash et al., 2005). In a mechanism termed polymerase switch, the replicative polymerase is exchanged by such a TLS polymerase at a damaged site. After incorporation of a nucleotide opposite the damaged base by the TLS polymerase, a second polymerase switch exchanges the TLS polymerase for the replicative polymerase so that replication can proceed (Prakash and Prakash, 2002; Lehmann et al., 2007). TLS polymerases possess no 5′-3′-exonuclease activity, and therefore act in a potentially mutagenic manner. Nevertheless, depending on the damage incurred and the TLS polymerase used, damage bypass can be error free (Haracska et al., 2000; McCulloch et al., 2004).Polymerases can be divided into at least six families based on their amino acid sequences and crystal structures: A, B, C, D, X, and Y. All of them share the common structure analogous to a right hand grasping DNA with palm, finger, and thumb domains (Steitz, 1999). The amino acid sequences of the finger and thumb domains of different polymerase families are highly variable, whereas the palm domains share high similarity. The palm domain forms the largest part of the polymerase active site and contains highly conserved Asp residues that have been postulated to be involved in the catalytic activity of the enzyme (Joyce and Steitz, 1995; Steitz, 1999).Most TLS polymerases belong to the Y family of polymerases, a class of specially structured enzymes that catalyze replication over damaged templates (Ohmori et al., 2001; Sale et al., 2012). Although some polymerases of the A, B, or X family can also exhibit TLS activity, this is often not their primary function (Prakash et al., 2005). DNA Polymerase Zeta (POLζ) is a B family polymerase and consists of a DNA Polymerase Zeta subunit REV3-REV7 heterodimer, in which REV3 is the catalytic subunit with its accessory subunit and processivity factor REV7 (Nelson et al., 1996). Recent studies in yeast and human cells have shown that POLζ contains two additional subunits, Pol31 and Pol32 in yeast, orthologs to human POLD2 and POLD3, which are known to be accessory subunits of the replicative polymerase POLδ (Johnson et al., 2012; Lee et al., 2014). REV3 contains three regions that are highly conserved between organisms: an N-terminal region, a REV7 binding domain, and a B family-type polymerase domain. The polymerase domain carries the six common conserved regions, I to VI (IV-II-VI-III-I-V), of which I is the most and VI the least conserved region. The A (II), B (III), and C (I) motifs, located within regions I, II, and III (Wong et al., 1988), form the active site of the enzyme, and each harbors an essential Asp residue that coordinates two catalytic metal ions. Deficiency of REV3 in mice is embryo lethal (Bemark et al., 2000; Esposito et al., 2000), and vertebrate cells depleted in REV3 show hypersensitivity to various DNA-damaging agents, including UV and ionizing irradiation, cisplatin, MMS, and mitomycin C (MMC; Sonoda et al., 2003; Sharma and Canman, 2012). In Arabidopsis, rev3 mutants exhibit no obvious phenotype under standard growth conditions, but are hypersensitive to UV-B and gamma irradiation, MMC, MMS, and cisplatin (Sakamoto et al., 2003).Our previous work demonstrated the existence of several different pathways in Arabidopsis involved in repairing the DNA damage induced by cross-linking and methylating agents. These independent pathways are defined by the ATPase RAD5A, the helicase RECQ4A, and MMS and UV-sensitive protein81 (MUS81; Mannuss et al., 2010). The structure-specific endonuclease MUS81 together with its noncatalytic subunit (Mms4 in yeast, Eme1 in Schizosaccharomyces pombe, and MMS4 or Crossover Junction Endonuclease (EME1) in humans and plants) functions in the rescue of stalled replication forks. The enzyme is able to cleave the stalled fork at the lesion site, which leads to a one-sided DSB that is repaired by homologous recombination (HR) to restore the stalled fork (Hanada et al., 2006). We previously showed that mus81 transfer DNA (T-DNA) insertion lines in Arabidopsis are highly sensitive to treatment with MMS, cisplatin, hydroxyurea, ionizing irradiation, and MMC. We also found that AtMUS81 can form a complex with its heterologous binding partners AtEME1A or AtEME1B that is able to process intricate DNA structures, such as nicked Holliday junctions, which might also form at stalled replication forks (Hartung et al., 2006; Geuting et al., 2009).In the current study, we address whether fully functional polymerase activity is required for the repair of DNA damage induced by alkylating and cross-link-inducing agents. Moreover, we sought to clarify whether REV3 cooperates with other key factors identified in Arabidopsis in the repair of these different types of damage. Indeed, it has already been shown that AtREV3 and AtRAD5A do not cooperate in the repair of such DNA damage, confirming independent pathways of error-prone and error-free PRR in plants (Wang et al., 2011). However, as plants, animals, and yeast differ in their DNA cross-link repair machinery (e.g. Mannuss et al., 2010; Knoll et al., 2012; Dangel et al., 2014; Herrmann et al., 2015), it is of particular importance to define the role of REV3 in relation to MUS81 and RECQ4A.  相似文献   
992.
In vitro, alpha-adrenoreceptor stimulation of rat mesenteric small arteries often leads to a rhythmic change in wall tension, i.e., vasomotion. Within the individual smooth muscle cells of the vascular wall, vasomotion is often preceded by a period of asynchronous calcium waves. Abruptly, these low-frequency waves may transform into high-frequency whole cell calcium oscillations. Simultaneously, multiple cells synchronize, leading to rhythmic generation of tension. We present a mathematical model of vascular smooth muscle cells that aims at characterizing this sudden transition. Simulations show calcium waves sweeping through the cytoplasm when the sarcoplasmic reticulum (SR) is stimulated to release calcium. A rise in cGMP leads to the experimentally observed transition from waves to whole cell calcium oscillations. At the same time, membrane potential starts to oscillate and the frequency approximately doubles. In this transition, the simulated results point to a key role for a recently discovered cGMP-sensitive calcium-dependent chloride channel. This channel depolarizes the membrane in response to calcium released from the SR. In turn, depolarization causes a uniform opening of L-type calcium channels on the cell surface, stimulating a synchronized release of SR calcium and inducing the shift from waves to whole cell oscillations. The effect of the channel is therefore to couple the processes of the SR with those of the membrane. We hypothesize that the shift in oscillatory mode and the associated onset of oscillations in membrane potential within the individual cell may underlie sudden intercellular synchronization and the appearance of vasomotion.  相似文献   
993.
Mesenchymal stroma cells (MSC) are increasingly recognized for various applications of cell-based therapies such as regenerative medicine or immunomodulatory treatment strategies. Standardized large-scale expansions of MSC under good manufacturing practice (GMP)-compliant conditions avoiding animal derived components are mandatory for further evaluation of these novel therapeutic approaches in clinical trials.We applied a novel automated hollow fiber cell expansion system (CES) for in vitro expansion of human bone marrow derived MSC employing a GMP-compliant culture medium with human platelet lysate (HPL). Between 8 and 32 ml primary bone marrow aspirate were loaded into the hollow fiber CES and cultured for 15–27 days. 2–58 million MSC were harvested after primary culture. Further GMP-compliant cultivation of second passage MSC for 13 days led to further 10–20-fold enrichment. Viability, surface antigen expression, differentiation capacity and immunosuppressive function of MSC cultured in the hollow fiber CES were in line with standard criteria for MSC definition. We conclude that MSC can be enriched from primary bone marrow aspirate in a GMP-conform manner within a closed hollow fiber bioreactor and maintain their T lymphocyte inhibitory capacity. Standardized and reliable conditions for large scale MSC expansion pave the way for safe applications in humans in different therapeutic approaches.  相似文献   
994.
During the transition from a free-swimming, single-cell lifestyle to a sessile, multicellular state called a biofilm, bacteria produce and secrete an extracellular matrix comprised of nucleic acids, exopolysaccharides, and adhesion proteins. The Vibrio cholerae biofilm matrix contains three major protein components, RbmA, Bap1, and RbmC, which are unique to Vibrio cholerae and appear to support biofilm formation at particular steps in the process. Here, we focus on RbmA, a structural protein with an unknown fold. RbmA participates in the early cell-cell adhesion events and is found throughout the biofilm where it localizes to cell-cell contact sites. We determined crystal structures of RbmA and revealed that the protein folds into tandem fibronectin type III (FnIII) folds. The protein is dimeric in solution and in crystals, with the dimer interface displaying a surface groove that is lined with several positively charged residues. Structure-guided mutagenesis studies establish a crucial role for this surface patch for RbmA function. On the basis of the structure, we hypothesize that RbmA serves as a tether by maintaining flexible linkages between cells and the extracellular matrix.  相似文献   
995.
The strain Pseudomonas putida DOT-T1E was tested for its ability to tolerate second phases of different alkanols for their use as solvents in two-liquid-phase biotransformations. Although 1-decanol showed an about 10-fold higher toxicity to the cells than 1-octanol, the cells were able to adapt completely to 1-decanol only and could not be adapted in order to grow stably in the presence of a second phase of 1-octanol. The main explanation for this observation can be seen in the higher water and membrane solubility of 1-octanol. The hydrophobicity (log P) of a substance correlates with a certain partitioning of that compound into the membrane. Combining the log P value with the water solubility, the maximum membrane concentration of a compound can be calculated. With this simple calculation, it is possible to predict the property of an organic chemical for its potential applicability as a solvent for two-liquid-phase biotransformations with solvent-tolerant P. putida strains. Only compounds that show a maximum membrane concentration of less than 400mM, such as 1-decanol, seem to be tolerated by these bacterial strains when applied in supersaturating concentrations to the medium. Taking into consideration that a solvent for a two-liquid-phase system should possess partitioning properties for potential substrates and products of a fine chemical synthesis, it can be seen that 1-decanol is a suitable solvent for such biotransformation processes. This was also demonstrated in shake cultures, where increasing amounts of a second phase of 1-decanol led to bacteria tolerating higher concentrations of the model substrate 3-nitrotoluene. Transferring this example to a 5-liter-scale bioreactor with 10% (vol/vol) 1-decanol, the amount of 3-nitrotoluene tolerated by the cells is up to 200-fold higher than in pure aqueous medium. The system demonstrates the usefulness of two-phase biotransformations utilizing solvent-tolerant bacteria.  相似文献   
996.
To determine the antibacterial activity of defensins and other antimicrobial peptides in biopsy extracts, we evaluated a flow cytometric method with the membrane potential sensitive dye bis-(1,3-dibutylbarbituric acid) trimethine oxonol [DiBAC4(3)]. This assay enables us to discriminate intact non-fluorescent and depolarized fluorescent bacteria after exposure to antimicrobial peptides by measurement at the direct target, the cytoplasmic membrane and the membrane potential. The feasibility of the flow cytometric assay was evaluated with recombinant human beta-defensin 3 (HBD-3) against 25 bacterial strains representing 12 species. HBD-3 showed a broad-spectrum dose dependent activity and the minimal dose to cause depolarization ranged from 1.25 to >15 microg/ml HBD-3, depending on the species tested. The antibacterial effect was diminished with sodium chloride or dithiothreitol and could be abrogated with a HBD-3 antibody. Additionally, isolated cationic extracts from human intestinal biopsies showed a strong bactericidal effect against Escherichia coli K12, E. coli ATCC 25922 and Staphylococcus aureus ATCC 25923, which was diminished towards E. coli at 150 mM NaCl, whereas the activity towards S. aureus ATCC 25923 remained unaffected at physiological salt concentrations. DTT blocked the bactericidal effect of biopsy extracts completely.  相似文献   
997.
In the chemotherapeutic treatment of patients with disseminated neoplasms, multidrug resistance (MDR) is a major obstacle. ABCG2 (BCRP/MXR), a member of the superfamily of adenosine triphosphate-binding cassette (ABC) transporters, was demonstrated to be associated with "atypical" forms of multidrug-resistant phenotypes of cancer cells. To overcome the ABCG2-depending MDR, two specific anti-ABCG2 small interfering RNAs (siRNAs) were designed for transient triggering of the gene-silencing RNA interference (RNAi) pathway in the human gastric carcinoma cell line EPG85-257RNOV, exhibiting an atypical MDR phenotype. Because both siRNAs showed biological activity, for stable inhibition of ABCG2 corresponding short hairpin RNA (shRNA) expression vectors were constructed. By treatment of EPG85-257RNOV cells with these constructs, expression of the targeted ABCG2-encoding mRNA and transport protein was inhibited completely. Furthermore, anti-ABCG2 shRNA-treated cells increased cellular drug accumulation to the same level measured in drug-sensitive parental cells. These effects were accompanied by complete reversal of the drug-resistant phenotype. Thus, the data indicate that siRNA- and shRNA-mediated RNAi-based gene therapy may be applicable in preventing and reversing ABCG2-depending atypical MDR.  相似文献   
998.
999.
Composition and gene content of a biogas-producing microbial community from a production-scale biogas plant fed with renewable primary products was analysed by means of a metagenomic approach applying the ultrafast 454-pyrosequencing technology. Sequencing of isolated total community DNA on a Genome Sequencer FLX System resulted in 616,072 reads with an average read length of 230 bases accounting for 141,664,289 bases sequence information. Assignment of obtained single reads to COG (Clusters of Orthologous Groups of proteins) categories revealed a genetic profile characteristic for an anaerobic microbial consortium conducting fermentative metabolic pathways. Assembly of single reads resulted in the formation of 8752 contigs larger than 500 bases in size. Contigs longer than 10kb mainly encode house-keeping proteins, e.g. DNA polymerase, recombinase, DNA ligase, sigma factor RpoD and genes involved in sugar and amino acid metabolism. A significant portion of contigs was allocated to the genome sequence of the archaeal methanogen Methanoculleus marisnigri JR1. Mapping of single reads to the M. marisnigri JR1 genome revealed that approximately 64% of the reference genome including methanogenesis gene regions are deeply covered. These results suggest that species related to those of the genus Methanoculleus play a dominant role in methanogenesis in the analysed fermentation sample. Moreover, assignment of numerous contig sequences to clostridial genomes including gene regions for cellulolytic functions indicates that clostridia are important for hydrolysis of cellulosic plant biomass in the biogas fermenter under study. Metagenome sequence data from a biogas-producing microbial community residing in a fermenter of a biogas plant provide the basis for a rational approach to improve the biotechnological process of biogas production.  相似文献   
1000.
Aim: To investigate a 1‐week once‐daily triple therapy with esomeprazole, moxifloxacin, and rifabutin for rescue therapy of Helicobacter pylori infection. Methods: Consecutive patients (n = 103) with at least one previous treatment failure and H. pylori infection resistant to both metronidazole and clarithromycin were treated with esomeprazole 40 mg, moxifloxacin 400 mg, and rifabutin 300 mg, given once daily for 7 days. Eradication was confirmed by histology and culture. CYP2C19 status was determined by polymerase chain reaction‐restriction fragment length polymorphism. Results: Intention‐to‐treat and per‐protocol eradication rates were 77.7% (68.4–85.3) and 83.3% (74.4–90.2). Five patients discontinued prematurely (4.8%). Eradication was achieved in 93.1% of poor/intermediate metabolizers and in 78.8% of homozygous extensive metabolizers (p = .14). Eradication rates in patients with one, two, three, and four or more previous failures were 78.3%, 89.6%, 68.6%, and 88.9%, respectively (p = .21). The regimen was effective in seven of nine patients who previously failed quadruple therapy. Post‐treatment resistance to moxifloxacin and rifabutin was detected in two (12.5%) and five (31%) patients after treatment failure. Conclusion: Once‐daily triple therapy with esomeprazole, moxifloxacin, and rifabutin is a promising, safe, and convenient regimen for rescue therapy of H. pylori infection that may serve as a valuable alternative to quadruple therapy, particularly for patients with intolerance to amoxicillin.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号