首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3006篇
  免费   286篇
  国内免费   1篇
  2023年   16篇
  2022年   26篇
  2021年   43篇
  2020年   42篇
  2019年   52篇
  2018年   54篇
  2017年   50篇
  2016年   72篇
  2015年   140篇
  2014年   154篇
  2013年   176篇
  2012年   262篇
  2011年   238篇
  2010年   148篇
  2009年   143篇
  2008年   211篇
  2007年   188篇
  2006年   176篇
  2005年   175篇
  2004年   164篇
  2003年   153篇
  2002年   157篇
  2001年   33篇
  2000年   27篇
  1999年   28篇
  1998年   37篇
  1997年   21篇
  1996年   18篇
  1995年   30篇
  1994年   14篇
  1993年   22篇
  1992年   18篇
  1991年   23篇
  1990年   21篇
  1989年   13篇
  1988年   10篇
  1987年   6篇
  1986年   10篇
  1985年   9篇
  1984年   12篇
  1983年   6篇
  1982年   8篇
  1981年   10篇
  1979年   9篇
  1978年   5篇
  1977年   5篇
  1975年   8篇
  1974年   4篇
  1971年   4篇
  1969年   5篇
排序方式: 共有3293条查询结果,搜索用时 31 毫秒
51.
52.
In recent years, many fungal genomes have become publicly available. In combination with novel gene editing tools, this allows for accelerated strain construction, making filamentous fungi even more interesting for the production of valuable products. However, besides their extraordinary production and secretion capacities, fungi most often exhibit challenging morphologies, which need to be screened for the best operational window. Thereby, combining genetic diversity with various environmental parameters results in a large parameter space, creating a strong demand for time-efficient phenotyping technologies. Microbioreactor systems, which have been well established for bacterial organisms, enable an increased cultivation throughput via parallelization and miniaturization, as well as enhanced process insight via non-invasive online monitoring. Nevertheless, only few reports about microtiter plate cultivation for filamentous fungi in general and even less with online monitoring exist in literature. Moreover, screening under batch conditions in microscale, when a fed-batch process is performed in large-scale might even lead to the wrong identification of optimized parameters. Therefore, in this study a novel workflow for Aspergillus niger was developed, allowing for up to 48 parallel microbioreactor cultivations in batch as well as fed-batch mode. This workflow was validated against lab-scale bioreactor cultivations to proof scalability. With the optimized cultivation protocol, three different micro-scale fed-batch strategies were tested to identify the best protein production conditions for intracellular model product GFP. Subsequently, the best feeding strategy was again validated in a lab-scale bioreactor.  相似文献   
53.
The metazoan taxon Syndermata (Monogononta, Bdelloidea, Seisonidea, Acanthocephala) comprises species with vastly different lifestyles. The focus of this study is on the phylogeny within the syndermatan subtaxon Acanthocephala (thorny-headed worms, obligate endoparasites). In order to investigate the controversially discussed phylogenetic relationships of acanthocephalan subtaxa we have sequenced the mitochondrial (mt) genomes of Echinorhynchus truttae (Palaeacanthocephala), Paratenuisentis ambiguus (Eoacanthocephala), Macracanthorhynchus hirudinaceus (Archiacanthocephala), and Philodina citrina (Bdelloidea). In doing so, we present the largest molecular phylogenetic dataset so far for this question comprising all major subgroups of Acanthocephala. Alongside with publicly available mt genome data of four additional syndermatans as well as 18 other lophotrochozoan (spiralian) taxa and one outgroup representative, the derived protein-coding sequences were used for Maximum Likelihood as well as Bayesian phylogenetic analyses. We achieved entirely congruent results, whereupon monophyletic Archiacanthocephala represent the sister taxon of a clade comprising Eoacanthocephala and monophyletic Palaeacanthocephala (Echinorhynchida). This topology suggests the secondary loss of lateral sensory organs (sensory pores) within Palaeacanthocephala and is further in line with the emergence of apical sensory organs in the stem lineage of Archiacanthocephala.  相似文献   
54.
The breakage or distortion of cellular structures is one of the biggest problems in creating micro-sections for wood anatomical analyses in tree-ring as well as other branches of anatomical research. These broken or distorted structures cause artifacts in photomicrographs that require time consuming image manipulation or corrections prior to further analyses. The simple application of a cornstarch, water, and glycerol (CWG) solution (10:8:7 ratio), a so called non-Newtonian fluid to the surface of wooden specimen before sectioning improves the overall quality of the resulting micro-sections. In particular the problem of secondary cell walls splitting off the primary wall while sectioning is drastically reduced. The quality of the sections using this solution is comparable to that obtained from the more laborious and expensive paraffin embedding.  相似文献   
55.
The lung is protected against oxidative stress by a variety of antioxidants and type II pneumocytes seem to play an important role in antioxidant defense. Previous studies have shown that inhalation of NO2 results in acute and chronic lung injury. How the expression and enzyme activity of antioxidant enzymes are influenced in type II cells of different inflammatory stages has yet not been studied. To elucidate this question, we exposed rats to 10 ppm NO2 for 3 or 20 days to induce acute or chronic lung injury. From these and air-breathing rats, type II pneumocytes were isolated. The mRNA expression and protein content of CuZnSOD and MnSOD as well as total SOD-specific enzyme activity were determined. For the acute lung injury (3 d NO2), the expression of CuZnSOD mRNA was significantly increased, while MnSOD expression was significantly reduced after 3 days of NO 2 exposure. For the chronic lung injury (20 d NO2), CuZnSOD expression was still enhanced, while MnSOD expression was comparable to control. In parallel to CuZnSOD mRNA expression, the protein amount was significantly increased in acute and chronic lung injury however MnSOD protein content exhibited no intergroup differences. Total SOD enzyme activity showed a significant decrease after 3 days of NO2 exposure and was similar to control after 20 days. We conclude that during acute and chronic lung injury in type II pneumocytes expression and protein synthesis of CuZnSOD and MnSOD are regulated differently.  相似文献   
56.
The third Heidelberg Unseminars in Bioinformatics (HUB) was held on 18th October 2012, at Heidelberg University, Germany. HUB brought together around 40 bioinformaticians from academia and industry to discuss the ‘Biggest Challenges in Bioinformatics’ in a ‘World Café’ style event.  相似文献   
57.
58.
Abstract

Lipophilic phosphodiester L-alaninates of acyclic unsaturated nucleoside analogues 1d, 1e, 2d, 2e, 3d, 3e, 4d and 5d were prepared and their antiretroviral activity was examined in ATH8 cell culture infected with HIV-1. A possible mechanism of action of these analogues is discussed.  相似文献   
59.
Proteomics-based clinical studies have been shown to be promising strategies for the discovery of novel biomarkers of a particular disease. Here, we present a study of hepatocellular carcinoma (HCC) that combines complementary two-dimensional difference in gel electrophoresis (2D-DIGE) and liquid chromatography (LC-MS)-based approaches of quantitative proteomics. In our proteomic experiments, we analyzed a set of 14 samples (7 × HCC versus 7 × nontumorous liver tissue) with both techniques. Thereby we identified 573 proteins that were differentially expressed between the experimental groups. Among these, only 51 differentially expressed proteins were identified irrespective of the applied approach. Using Western blotting and immunohistochemical analysis the regulation patterns of six selected proteins from the study overlap (inorganic pyrophosphatase 1 (PPA1), tumor necrosis factor type 1 receptor-associated protein 1 (TRAP1), betaine-homocysteine S-methyltransferase 1 (BHMT)) were successfully verified within the same sample set. In addition, the up-regulations of selected proteins from the complements of both approaches (major vault protein (MVP), gelsolin (GSN), chloride intracellular channel protein 1 (CLIC1)) were also reproducible. Within a second independent verification set (n = 33) the altered protein expression levels of major vault protein and betaine-homocysteine S-methyltransferase were further confirmed by Western blots quantitatively analyzed via densitometry. For the other candidates slight but nonsignificant trends were detectable in this independent cohort. Based on these results we assume that major vault protein and betaine-homocysteine S-methyltransferase have the potential to act as diagnostic HCC biomarker candidates that are worth to be followed in further validation studies.Hepatocellular carcinoma (HCC)1 currently is the fifth most common malignancy worldwide with an annual incidence up to 500 per 100,000 individuals depending on the geographic region investigated. Whereas 80% of new cases occur in developing countries, the incidence increases in industrialized nations including Western Europe, Japan, and the United States (1). To manage patients with HCC, tumor markers are very important tools for diagnosis, indicators of disease progression, outcome prediction, and evaluation of treatment efficacy. Several tumor markers have been reported for HCC, including α-fetoprotein (AFP) (2), Lens culinaris agglutinin-reactive fraction of AFP (AFP-L3) (3), and des-γ-carboxyl prothrombin (DCP) (4). However, none of these tumor markers show 100% sensitivity or specificity, which calls for new and better biomarkers.To identify novel biomarkers of HCC, many clinical studies using “omics”-based methods have been reported over the past decade (56). In particular, the proteomics-based approach has turned out to be a promising one, offering several quantification techniques to reveal differences in protein expression that are caused by a particular disease. In most studies, the well-established 2D-DIGE technique has been applied for protein quantification followed by identification via mass spectrometry (715). Even if the quantification is very accurate and sensitive in this gel-based approach, the relatively high amount of protein sample necessary for protein identification is the major disadvantage of this technique. Several mass-spectrometry-based quantitative studies using labeling-techniques like SILAC (stable isotope labeling by amino acids in cell culture) or iTRAQ (isobaric tags for relative and absolute quantification) have also been carried out for biomarker discovery of HCC (1618). Here, the concomitant protein quantification and identification in a mass spectrometer allows high-throughput analyses. However, such experiments imply additional labeling reactions (in case of iTRAQ) or are limited to tissue culture systems (in case of SILAC). In the latter case, one can overcome the limitation by using the isotope-labeled proteins obtained from tissue culture as an internal standard added to a corresponding tissue sample. This approach is known as CDIT (culture-derived isotope tags) and was applied in a HCC study, very recently (19). Label-free proteomics approaches based on quantification by ion-intensities or spectral counting offer another possibility for biomarker discovery. These approaches are relatively cheap compared with the labeling approaches, because they do not require any labeling reagents and furthermore they allow for high-throughput and sensitive analyses in a mass spectrometer. A quantitative study of HCC using spectral counting has been reported (20), whereas to our knowledge an ion-intensity-based study has not been performed yet. Apart from these quantification strategies, protein alterations in HCC have been studied by MALDI imaging, as well. Here, the authors could show that based on its proteomic signature, hepatocellular carcinoma can be discriminated with high accuracy from liver metastasis samples or other cancer types (21) as well as liver cirrhosis (22). Based on these results, it could be assumed that MALDI imaging might be a promising alternative to standard histological methods in the future.Here, we report a quantitative proteomic study that combines two different techniques, namely the well-established 2D-DIGE approach and a label-free ion-intensity-based quantification via mass spectrometry and liquid chromatography. To our knowledge this is the first time such a combined study was performed with regard to hepatocellular carcinoma. By comparing the results of both studies, we aim to identify high-confident biomarker candidates of HCC, as gel- and LC-MS-based techniques are complementary. To verify the differential protein expressions detected in our proteomic studies we performed additional immunological verifications for selected proteins within two different sample sets (Fig. 1).Open in a separate windowFig. 1.Schematic representation of the applied workflow.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号