首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   10篇
  国内免费   3篇
  52篇
  2022年   2篇
  2021年   3篇
  2020年   3篇
  2019年   4篇
  2018年   10篇
  2017年   3篇
  2016年   2篇
  2015年   2篇
  2014年   4篇
  2013年   1篇
  2012年   6篇
  2011年   1篇
  2010年   3篇
  2008年   1篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
排序方式: 共有52条查询结果,搜索用时 0 毫秒
11.
12.
Bio surfactants are natural surfactants that induce emulsification, displacement, increased solubility, and mobility of hydrophobic organic compounds. In this study, the gene expression of biosurfactant production genes by Pseudomonas aeruginosa in the presence of sodium dodecyl sulfate coated iron nanostructure (Fe/SDS) were evaluated. Emulsification Index and Surface Tension reduction test to check stability and emulsification the rhamnolipid were done. Purification was evaluated using thin layer chromatography (TLC) and expression of rhlA, mvfR, lasR, rhlR genes was determined using q‐PCR technique. Binding of nanoparticles to bio surfactants was confirmed by TEM. The best emulsification index, was by the sample that exposed to 1 mg/L Fe/SDS nanoparticles for 2 days. Rhamnolipid produced in the presence of nanoparticles had an acceptable ability to reduce surface tension. The Rf (retention factor) value obtained was 0.63 by chromatography. q‐PCR results showed that the expression of rhlA, mvfR, lasR, rhlR genes was significantly increased in Fe/SDS treated cells, which indicates the significant positive effect (P < 0.05) of nanoparticles on biosurfactant production of treated cells. While, SDS and Fe alone were not affected significantly (P > 0.05) on the expression of these genes. Our findings indicated the importance of nanoparticles in increasing the expression of genes involved in the bio surfactant production pathway of Pseudomonas aeruginosa.  相似文献   
13.
Using cell‐based engineered skin is an emerging strategy for treating difficult‐to‐heal wounds. To date, much endeavor has been devoted to the fabrication of appropriate scaffolds with suitable biomechanical properties to support cell viability and growth in the microenvironment of a wound. The aim of this research was to assess the impact of adipose tissue‐derived mesenchymal stem cells (AD‐MSCs) and keratinocytes on gelatin/chitosan/β‐glycerol phosphate (GCGP) nanoscaffold in full‐thickness excisional skin wound healing of rats. For this purpose, AD‐MSCs and keratinocytes were isolated from rats and GCGP nanoscaffolds were electrospun. Through an in vivo study, the percentage of wound closure was assessed on days 7, 14, and 21 after wound induction. Samples were taken from the wound sites in order to evaluate the density of collagen fibers and vessels at 7 and 14 days. Moreover, sampling was done on days 7 and 14 from wound sites to assess the density of collagen fibers and vessels. The wound closure rate was significantly increased in the keratinocytes‐AD‐MSCs‐scaffold (KMS) group compared with other groups. The expressions of vascular endothelial growth factor, collagen type 1, and CD34 were also significantly higher in the KMS group compared with the other groups. These results suggest that the combination of AD‐MSCs and keratinocytes seeded onto GCGP nanoscaffold provides a promising treatment for wound healing.  相似文献   
14.
The aim of the present study was to compare the effects of two freezing methods, vapor phase and very rapid freezing, with and without cryoprotectant on semen parameters in men with normal semen criteria. Cryopreservation was done on semen samples from 31 men by two methods of vapor phase freezing and very rapid freezing, with and without Test Yolk buffered glycerol (TYBG) as cryoprotectant. The motility, viability, acrosome and DNA integrity were evaluated on fresh and post-thaw samples. Post-thaw sperm progressive motility was significantly higher in the presence of TYBG in the vapor phase cryopreservation (%6.30 ± 3.74) compared with the very rapid freezing method (%2.2 ± 1.97 and %4.00 ± 2.42 in the presence and absence of TYBG, respectively). There was no significant difference in viability, acrosome status and DNA integrity between two methods in presence or absence of TYBG. The very rapid freezing method in the absence of TYBG showed better sperm motility but viability, acrosome and DNA integrity were similar to the presence of TYBG. The results show that cryopreservation of human spermatozoa together with seminal plasma by using vapor phase method is better than very rapid freezing method to preserve sperm progressive motility; however very rapid freezing method is quick and simple and do not require special cryoprotectant. It can be used for cryopreservation of small number of spermatozoa in IVF centers.  相似文献   
15.
The traditional researcher-driven environment of medical knowledge production is losing its dominance with the expansion of, for instance, community-based participatory or participant-led medical research. Over the past few decades, sociologists of science have debated a shift in the production of knowledge from traditional discipline-based (Mode 1) to more socially embedded and transdisciplinary frameworks (Mode 2). Recently, scholars have tried to show the relevance of Mode 2 knowledge production to medical research. However, the existing literature lacks detailed clarifications on how a model of Mode 2 knowledge production can be constructed in the context of medical research. This paper calls for such further clarifications. As a heuristic means, the advocacy for a controversial experimental stem cell therapy (Stamina) is examined. It is discussed that the example cannot be considered a step towards Mode 2 medical knowledge production. Nonetheless, the example brings to the fore some complexities of medical knowledge production that need to be further examined including: (1) the shifting landscape of defining and addressing vulnerability of research participants, (2) the emerging overlap between research and practice, and (3) public health implications of revising the standard notions of quality control and accountability.  相似文献   
16.
The space between the t-tubule invagination and the sarcoplasmic reticulum (SR) membrane, the dyad, in ventricular myocytes has been predicted to experience very high [Ca2+] for short periods of time during a Ca2+ transient. The dyadic space accommodates many protein kinases responsible for the regulation of Ca2+ handling proteins of the cell. We show in vitro that cAMP-dependent protein kinase (PKA) is inhibited by high [Ca2+] through a shift in the ratio of CaATP/MgATP toward CaATP. We further generate a three-dimensional mathematical model of Ca2+ and ATP diffusion within dyad. We use this model to predict the extent to which PKA would be inhibited by an increased CaATP/MgATP ratio during a Ca2+ transient in the dyad in vivo. Our results suggest that under normal physiological conditions a myocyte paced at 1 Hz would experience up to 55% inhibition of PKA within the cardiac dyad, with inhibition averaging 5% throughout the transient, an effect which becomes more pronounced as the myocyte contractile frequency increases (at 7 Hz, PKA inhibition averages 28% across the dyad throughout the duration of a Ca2+ transient).  相似文献   
17.
In this work, two novel series of indole‐thiosemicarbazone derivatives were designed, synthesized, and evaluated for their cytotoxic activity against MCF‐7, A‐549, and Hep‐G2 cell lines in comparison to etoposide and colchicine as the reference drugs. Generally, the synthesized compounds showed better cytotoxicity towards A‐549 and Hep‐G2 than MCF‐7. Among them, (2E)‐2‐{[2‐(4‐chlorophenyl)‐1H‐indol‐3‐yl]methylidene}‐N‐(4‐methoxyphenyl)hydrazinecarbothioamide ( 8l ) was found to be the most potent compound against A‐549 and Hep‐G2, at least three times more potent than etoposide. The morphological analysis by the acridine orange/ethidium bromide double staining test and flow cytometry analysis indicated that compound 8l induced apoptosis in A‐549 cells. Moreover, molecular docking methodology was exploited to elucidate the details of molecular interactions of the studied compounds with putative targets.  相似文献   
18.
This study compares the ability of μCT image-based registration, 2D structural rigidity analyses and multimodal continuum-level finite element (FE) modeling in evaluating the mechanical stability of healthy, osteolytic, and mixed osteolytic/osteoblastic metastatically involved rat vertebrae. μMR and μCT images (loaded and unloaded) were acquired of lumbar spinal motion segments from 15rnu/rnu rats (five per group). Strains were calculated based on image registration of the loaded and unloaded μCT images and via analysis of FE models created from the μCT and μMR data. Predicted yield load was also calculated through 2D structural rigidity analysis of the axial unloaded μCT slices. Measures from the three techniques were compared to experimental yield loads. The ability of these methods to predict experimental yield loads were evaluated and image registration and FE calculated strains were directly compared. Quantitatively for all samples, only limited weak correlations were found between the image-based measures and experimental yield load. In comparison to the experimental yield load, we observed a trend toward a weak negative correlation with median strain calculated using the image-based strain measurement algorithm (r=-0.405, p=0.067), weak significant correlations (p<0.05) with FE based median and 10th percentile strain values (r=-0.454, -0.637, respectively), and a trend toward a weak significant correlation with FE based mean strain (r=-0.366, p=0.09). Individual group analyses, however, yielded more and stronger correlations with experimental results. Considering the image-based strain measurement algorithm we observed moderate significant correlations with experimental yield load (p<0.05) in the osteolytic group for mean and median strain values (r=-0.840, -0.832, respectively), and in the healthy group for median strain values (r=-0.809). Considering the rigidity-based predicted yield load, we observed a strong significant correlation with the experimental yield load in the mixed osteolytic/osteoblastic group (r=0.946) and trend toward a moderate correlation with the experimental yield load in the osteolytic group (r=0.788). Qualitatively, strain patterns in the vertebral bodies generated using image registration and FEA were well matched, yet quantitatively a significant correlation was found only between mean strains in the healthy group (r=0.934). Large structural differences in metastatic vertebrae and the complexity of motion segment loading may have led to varied modes of failure. Improvements in load characterization, material properties assignments and resolution are necessary to yield a more generalized ability for image-based registration, structural rigidity and FE methods to accurately represent stability in healthy and pathologic scenarios.  相似文献   
19.
Nowadays, alpha‐2‐macroglobulin (A2M) gene has allocated escalating interest among several genes involved in the pathogenesis of avascular necrosis of the femoral head (ANFH). This molecule could interact with several osteogenic‐related proteins. It was reported that adrenocorticotropic hormone (ACTH) affects bones through its receptor located on osteoblasts, suggesting it as a potential target in ANFH treatment. In this study, the effect of ACTH on A2M expression was investigated in osteoblasts as well as during the differentiation of human mesenchymal stem cells (MSCs) into osteoblasts. In this study, MSCs derived from bone marrow were isolated and purified using Ficoll gradient and several passaging. MSCs were characterized by induction with osteogenic and adipogenic medium followed by Oil Red O, Alizarin Red and alkaline phosphatase staining. Besides, MSCs were exposed to various concentrations of ACTH to evaluate the cell variability by MTT assay. MSCs and differentiated osteoblasts were treated with 10?8 molar ACTH for 16 and 26 days, respectively. Then, the total RNA was extracted and A2M expression was quantified by real‐time qPCR. The protein expression levels of osteoblast markers including alkaline phosphatase (ALPL) and bone gamma‐carboxyglutamate protein (BGLAP) were also measured. The results showed that A2M expression in cells treated with ACTH was up‐regulated significantly compared to the control group. Similarly, the expression of osteoblast gene markers including ALPL and BGLAP was significantly increased. ACTH, as an osteoblastic differentiation enhancer, up‐regulates A2M, which promotes osteoblastic differentiation probably through TGF‐β induction.  相似文献   
20.
Carboxymethyl cellulose (CMC) is one of the main derivatives of cellulose and is used as a drug carrier for hydrophobic and hydrophilic drugs, imaging in vivo, and biological applications. Encapsulation is a technology in which target compounds are coated with wall compounds to form microcapsules. This study reports a new chemical processing wet method for precipitation and encapsulation of strontium nanoparticles (Sr NPs) within CMC structures using a sonochemical method. Preparation parameters such as microwave power and irradiation time as well as morphology and particle size of Sr NPs were also investigated. Products were characterized by X‐ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis and atomic force microscopy. In this study, CMC was used as a biological stabilizer in a retentive phase to encapsulate Sr NPs. For the first time, Sr NPs were synthesized using CMC in a cost‐effective, simple, fast, micellation‐assisted, ultrasound method. Sr NPs were encapsulated in green capping agent structures of either 1%, 2% or 3% weight to provide an efficient optical nanostructure with a high yield at wavelengths 200–700 nm for use in in vivo imaging studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号