首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   210篇
  免费   82篇
  2021年   1篇
  2020年   3篇
  2017年   1篇
  2016年   4篇
  2015年   4篇
  2014年   1篇
  2013年   4篇
  2012年   8篇
  2011年   10篇
  2010年   3篇
  2009年   5篇
  2008年   8篇
  2007年   7篇
  2006年   7篇
  2005年   10篇
  2004年   14篇
  2003年   8篇
  2002年   8篇
  2001年   14篇
  2000年   15篇
  1999年   14篇
  1998年   6篇
  1997年   6篇
  1996年   7篇
  1995年   12篇
  1994年   5篇
  1993年   10篇
  1992年   15篇
  1991年   7篇
  1990年   6篇
  1989年   10篇
  1988年   4篇
  1987年   2篇
  1986年   6篇
  1985年   2篇
  1984年   10篇
  1983年   2篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1976年   6篇
  1975年   2篇
  1973年   1篇
  1972年   1篇
  1971年   4篇
  1970年   1篇
  1969年   6篇
  1967年   2篇
排序方式: 共有292条查询结果,搜索用时 15 毫秒
21.
Direct gene transfer to plants   总被引:18,自引:2,他引:16       下载免费PDF全文
Evidence for direct, gene-mediated stable genetic transformation of plant cells of Nicotiana tabacum is presented. A selectable hybrid gene comprising the protein coding region of the Tn5 aminoglycoside phosphotransferase type II gene under control of cauliflower mosaic virus gene VI expression signals was introduced into plant protoplasts as part of an Escherichia coli plasmid. The gene was stably integrated into plant genomic DNA and constitutively expressed in selected, drug resistant, protoplast-derived cell clones. The mode of integration of the foreign gene into the plant genome resembled that observed for DNA transfection of mammalian cells. Plants regenerated from transformed cell lines were phenotypically normal and fertile, and they maintained and expressed the foreign gene throughout the development of vegetative and generative organs. Microspores, grown in anther culture, developed into resistant and sensitive haploid plantlets. Genetic crossing analysis of one of the transformed plants revealed the presence of one dominant trait for kanamycin resistance segregating in a Mendelian fashion in the F1 generation.  相似文献   
22.
Summary Chromosomal segments of Rhodopseudomonas capsulata carrying the ribosomal operons and cloned with the cosmid vector pHC79 have been identified by cross hybridization with 32P-ATP labeled rRNAs. At least seven rRNA operons are present in the R. capsulata chromosome. By R-loop analyses of DNA-RNA hybrids, two distinct loop structures of sizes 1.50 kb and 2.52 kb corresponding to the 16S and 23S RNA molecules, respectively, were detected. Intact 23S RNA molecules can be isolated from R. capsulata ribosomes by sucrose density centrifugation. However, fragmentation of the 23S RNA molecule into a 16S-like molecule was observed during gel electrophoresis. Restriction mapping and hybridization of a 9 kb PstI fragment that contained one copy of the rRNA operon showed the following sequence of the RNA genes in R. capsulata 16S, 23S, and 5S. A spacer region of 0.91 kb was found between the 16S and the 23S RNA genes.  相似文献   
23.
24.
Summary We have previously shown that the maize transposable element Ds1 introduced into maize plants by agroinfection can be excised from the genome of geminivirus maize streak virus (MSV). Excision depended strictly on the presence of an active Ac element in the plants. In this study, the excision products or footprints left in the MSV genome after Ds1 excision were extensively characterized and the effects of flanking sequences on Ds1 excision were analysed. Most types of footprints obtained were comparable to those described for Ds1 excision in the maize genome, and could be explained by the models proposed for excision of plant transposable elements. In two revertants, however, some terminal sequences of the Ds1 element were found to have been left behind at the excision site. The finding of this novel type of Ds1 footprint indicated that gene conversion events occurred during and/or after Ds1 excision from the MSV genome. A partial deletion of one copy of the 8 by duplications flanking the Ds1 element had no effect on the frequency or on the types of footprints of Ds1 excision from the MSV genome. Thus, the duplicated 8 by sequences flanking the transposable element are not involved in Ds1 excision. These results, as well as a statistical analysis of the modifications of the bases flanking the Ds1 element after excision, are discussed in terms of excision models.  相似文献   
25.
Interstrand cross-links induced by psoralen-plus-light are removed from the DNA of Escherichia coli, and this reaction is effected by the uvrA, uvrB, uvrC and polA (5′ → 3′ exonuclease) gene products. During cross-link removal, cellular DNA strands are cut so that, upon denaturation, the DNA dissociates into segments having an average molecular weight about equal to twice the average distance between cross-links. These strand cuts are persistent in cells, having a half-life of more than 20 minutes.The structure of cross-linked DNA undergoing repair was further investigated by use of density and radioactively labeled isotopes. These experiments demonstrate that two strand cuts are made in one DNA strand near each cross-link, one on each side of one arm of the cross-link. A mechanism is proposed for cross-link removal. The endonuclease coded for by the uvrA and B genes makes an incision on the 5′ side of one arm of a cross-link. Polymerase I (5′ → 3′ exonuclease) then makes a second cut on the 3′ side, in the same strand. This allows the strands to be separated during denaturation, but would leave the second arm of the cross-linking structure still attached to the uncut strand. The persistence of strand cuts at cross-links suggests that rejoining, dependent upon repair polymerization and ligation, is blocked by such a partially excised cross-linking residue. Initial stages of cross-link removal appear to be similar to pyrimidine dimer excision, but intermediates generated by these processes differ substantially in structure and repair must be completed by different mechanisms.  相似文献   
26.
Diet studies are fundamental for understanding trophic connections in marine ecosystems. In the southeastern US, the common bottlenose dolphin Tursiops truncatus is the predominant marine mammal in coastal waters, but its role as a top predator has received little attention. Diet studies of piscivorous predators, like bottlenose dolphins, start with assessing prey otoliths recovered from stomachs or feces, but digestive erosion hampers species identification and underestimates fish weight (FW). To compensate, FW is often estimated from the least affected otoliths and scaled to other otoliths, which also introduces bias. The sulcus, an otolith surface feature, has a species‐specific shape of its ostium and caudal extents, which is within the otolith edge for some species. We explored whether the sulcus could improve species identification and estimation of prey size using a case study of four sciaenid species targeted by fisheries and bottlenose dolphins in North Carolina. Methods were assessed first on otoliths from a reference collection (n = 421) and applied to prey otoliths (n = 5,308) recovered from 120 stomachs of dead stranded dolphins. We demonstrated in reference‐collection otoliths that cauda to sulcus length (CL:SL) could discriminate between spotted seatrout (Cynoscion nebulosus) and weakfish (Cynoscion regalis) (classification accuracy = 0.98). This method confirmed for the first time predation of spotted seatrout by bottlenose dolphins in North Carolina. Using predictive models developed from reference‐collection otoliths, we provided evidence that digestion affects otolith length more than sulcus or cauda length, making the latter better predictors. Lastly, we explored scenarios of calculating total consumed biomass across degrees of digestion. A suggested approach was for the least digested otoliths to be scaled to other otoliths iteratively from within the same stomach, month, or season as samples allow. Using the otolith sulcus helped overcome challenges of species identification and fish size estimation, indicating their potential use in other diet studies.  相似文献   
27.
28.
29.
We screened a Fusarium sporotrichioides NRRL 3299 cDNA expression library in a toxin-sensitive Saccharomyces cerevisiae strain lacking a functional PDR5 gene. Fourteen yeast transformants were identified as resistant to the trichothecene 4,15-diacetoxyscirpenol, and each carried a cDNA encoding the trichothecene 3-O-acetyltransferase that is the F. sporotrichioides homolog of the Fusarium graminearum TRI101 gene. Mutants of F. sporotrichioides NRRL 3299 produced by disruption of TRI101 were altered in their abilities to synthesize T-2 toxin and accumulated isotrichodermol and small amounts of 3, 15-didecalonectrin and 3-decalonectrin, trichothecenes that are not observed in cultures of the parent strain. Our results indicate that TRI101 converts isotrichodermol to isotrichodermin and is required for the biosynthesis of T-2 toxin.  相似文献   
30.
The sequences of different plant viral leaders with known translation enhancer ability show partial complementarity to the central region of 18S rRNA. Such complementarity might serve as a means to attract 40S ribosomal subunits and explain in part the translation-enhancing property of these sequences. To verify this notion, we designed β-glucuronidase (GUS) mRNAs differing only in the nature of 10 nt inserts in the center of their 41 base leaders. These were complementary to consecutive domains of plant 18S rRNA. Sucrose gradient analysis revealed that leaders with inserts complementary to regions 1105–1114 and 1115–1124 (‘ARC-1’) of plant 18S rRNA bound most efficiently to the 40S ribosomal subunit after dissociation from 80S ribosomes under conditions of high ionic strength, a treatment known to remove translation initiation factors. Using wheat germ cell-free extracts, we could demonstrate that mRNAs with these leaders were translated more than three times more efficiently than a control lacking such a complementarity. Three linked copies of the insert enhanced translation of reporter mRNA to levels comparable with those directed by the natural translation enhancing leaders of tobacco mosaic virus and potato virus Y RNAs. Moreover, inserting the same leaders as intercistronic sequences in dicistronic mRNAs substantially increased translation of the second cistron, thereby revealing internal ribosome entry site activity. Thus, for plant systems, the complementary interaction between mRNA leader and the central region of 18S rRNA allows cap-independent binding of mRNA to the 43S pre-initiation complex without assistance of translation initiation factors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号