首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   22篇
  2021年   1篇
  2018年   3篇
  2017年   1篇
  2016年   3篇
  2015年   6篇
  2014年   10篇
  2013年   7篇
  2012年   8篇
  2011年   6篇
  2010年   3篇
  2009年   3篇
  2008年   7篇
  2007年   14篇
  2006年   6篇
  2005年   9篇
  2004年   6篇
  2003年   6篇
  2002年   5篇
  2001年   11篇
  2000年   6篇
  1999年   2篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1992年   3篇
  1991年   2篇
  1990年   6篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1984年   2篇
  1982年   1篇
  1978年   1篇
  1974年   3篇
  1973年   3篇
  1972年   1篇
  1926年   1篇
  1910年   1篇
排序方式: 共有158条查询结果,搜索用时 15 毫秒
61.
Overexpression of interleukin (IL-)17 has recently been shown to be associated with a number of pathological conditions. Because IL-17 is found at high levels in the synovial fluid surrounding cartilage in patients with inflammatory arthritis, the present study determined the direct effect of IL-17 on articular cartilage. As shown herein, IL-17 was a direct and potent inducer of matrix breakdown and an inhibitor of matrix synthesis in articular cartilage explants. These effects were mediated in part by leukemia inhibitory factor (LIF), but did not depend on interleukin-1 activity. The mechanism whereby IL-17 induced matrix breakdown in cartilage tissue appeared to be due to stimulation of activity of aggrecanase(s), not matrix metalloproteinase(s). However, IL-17 upregulated expression of matrix metalloproteinase(s) in chondrocytes cultured in monolayer. In vivo, IL-17 induced a phenotype similar to inflammatory arthritis when injected into the intra-articular space of mouse knee joints. Furthermore, a related protein, IL-17E, was found to have catabolic activity on human articular cartilage. This study characterizes the mechanism whereby IL-17 acts directly on cartilage matrix turnover. Such findings have important implications for the treatment of degenerative joint diseases such as arthritis.  相似文献   
62.
There is an age-associated decline in the mitochondrial function of the Wistar rat heart. Previous reports from this lab have shown a decrease in mitochondrial cytochrome c oxidase (COX) activity associated with a reduction in COX gene and protein expression and a similar decrease in the rate of mitochondrial protein synthesis. Damage to mitochondrial DNA may contribute to this decline.

Using the HPLC-Coularray system (ESA, USA), we measured levels of nuclear and mitochondrial 8-oxo-2'-deoxyguanosine (8-oxodG) from 6-month (young) and 23-month-old (senescent) rat liver DNA. We measured the sensitivity of the technique by damaging calf thymus DNA with photoactivated methylene blue for 30s up to 2h. The levels of damage were linear over the entire time course including the shorter times which showed levels comparable to those expected in liver. For the liver data, 8-oxodG was reported as a fraction of 2-deoxyguanosine (2-dG). There was no change in the levels of 8-oxodG levels in the nuclear DNA from 6 to 23-months of age. However, the levels of 8-oxodG increased 2.5-fold in the mitochondrial DNA with age. At 6 months, the level of 8-oxodG in mtDNA was 5-fold higher than nuclear and increased to approximately 12-fold higher by 23 months of age. These findings agree with other reports showing an age-associated increase in levels of mtDNA damage; however, the degree to which it increases is smaller. Such damage to the mitochondrial DNA may contribute to the age-associated decline in mitochondrial function.  相似文献   
63.
Antisera prepared against each of three single and one pair of major structural proteins of the bovine coronavirus (Mebus strain) were used in immunoblotting studies to measure cross-reactivity with the structural proteins of the human coronavirus OC43 and the mouse hepatitis coronavirus A59. We conclude that the bovine coronavirus is comprised of four major structural proteins, gp190 (normally present as 120- and 100-kilodalton subunits), gp140, pp52, and gp26. The human coronavirus OC43 has an antigenically homologous counterpart of similar molecular mass to each of these proteins. The mouse hepatitis coronavirus A59 has an antigenically homologous counterpart to only three of these proteins: gp190, pp52 and gp26. There is no counterpart in the mouse virus to the 140-kilodalton glycoprotein, the apparent hemagglutinin of the bovine coronavirus.  相似文献   
64.
The luminescent isomorphous Ca2+ analogue, Tb3+, can be bound in the 12-amino acid metal binding sites of proteins of the EF hand family, and its luminescence can be enhanced by energy transfer from a nearby aromatic amino acid. Tb3+ can be used as a sensitive luminescent probe of the structure and function of these proteins. The effect of changing the molecular environment around Tb3+ on its luminescence was studied using native Cod III parvalbumin and site-directed mutants of both oncomodulin and calmodulin. Titrations of these proteins showed stoichiometries of fill corresponding to the number of Ca2+ binding loops present. Tryptophan in binding loop position 7 best enhanced Tb3+ luminescence in the oncomodulin mutant Y57W, as well as VU-9 (F99W) and VU-32 (T26W) calmodulin. Excitation spectra of Y57F, F102W, Y65W oncomodulin, and Cod III parvalbumin revealed that the principal Tb3+ luminescence donor residues were phenylalanine or tyrosine located in position 7 of a loop, despite the presence of other nearby donors, including tryptophan. Spectra also revealed conformational differences between the Ca2+- and Tb(3+)-bound forms. An alternate binding loop, based on Tb3+ binding to model peptides, was inserted into the CD loop of oncomodulin by cassette mutagenesis. The order of fill of Tb3+ in this protein reversed, with the mutated loop binding Tb3+ first. This indicates a much higher affinity for the consensus-based mutant loop. The mutant loop inserted into oncomodulin had 32 times more Tb3+ luminescence than the identical synthetic peptide, despite having the same donor tryptophan and metal binding ligands. In this paper, a ranking of sensitivity of luminescence of bound Tb3+ is made among this subset of calcium binding proteins. This ranking is interpreted in light of the structural differences affecting Tb3+ luminescence enhancement intensity. The mechanism of energy transfer from an aromatic amino acid to Tb3+ is consistent with a short-range process involving the donor triplet state as described by Dexter (Dexter, D. L. (1953) J. Chem. Phys. 21, 836). This cautions against the use of the F?rster equation in approximating distances in these systems.  相似文献   
65.
1. We have examined systematically the relationship between the percentage reduction of cardiac mitochondrial NAD and the flux through oxidative phosphorylation, as measured by O2 uptake. Reduction of NAD was varied by varying the concentration of palmitoyl-L-carnitine, pyruvate, 2-oxoglutarate or glutamate in the presence of malate as the oxidizable substrate. 2. In the presence of ADP (State 3 respiration) there was a substantially linear positive relationship between O2 uptake and the percentage reduction of NAD. Coupled respiration in the absence of ADP also showed an increase with increasing NADH, with the exact shape of the relationship being variable. 3. When pyruvate and 2-oxoglutarate dehydrogenase activity were increased by increasing medium Ca2+ concentration within the range 5 nM to 1.23 microM, at non-saturating substrate concentrations, there was again a positive relationship between O2 uptake and the reduction of NAD; however, rates of O2 uptake tended to be higher at given values of NAD reduction when the incubation medium contained Ca2+. This is taken to indicate an activation by Ca2+ of the enzymes of phosphorylation or of the respiratory chain, in addition to the dehydrogenase activation. 4. When carboxyatractyloside plus ADP were used to generate 50% State 3 rates of O2 uptake with pyruvate or 2-oxoglutarate, sensitivity to Ca2+ was retained. However, when oligomycin plus 1 mM-ADP and 1 mM-ATP were used to generate 50% State 3, no such dependence was seen. 5. The results are interpreted to indicate a substantial role for substrate dehydrogenation in the overall regulation of oxidative phosphorylation when substrates are available at near-physiological concentrations.  相似文献   
66.
Although previous investigations have concluded that reactive oxygen metabolites contribute to reperfusion arrhythmias, the experimental models employed also had a significant amount of tissue injury, which may have contributed to the observed electrophysiologic effects. We studied whether exposure of the intact heart to a reactive oxygen metabolite at doses that are not associated with histologic evidence of cell necrosis would alter myocardial refractoriness, suggesting that subtle and reversible oxidative stress could alter myocardial electrophysiologic properties and perhaps contribute to ventricular arrhythmias. Isolated rabbit hearts were perfused for 30 min with low doses of hydrogen peroxide (H2O2), either 10(-5), 5 x 10(-6), or 10(-6)-M H2O2 versus vehicle alone; followed by a 30-min washout period without H2O2. Infusion of H2O2 for 30 min decreased ventricular epicardial effective refractory period (ERP) in a dose-dependent manner compared to saline controls (delta ERP). The delta ERP versus time curves during the last 10 min of H2O2 infusion were different (p less than 0.01) for each of the three H2O2 doses. Creatine phosphokinase and reversible oxidized glutathione release occurred during 10(-5)-M H2O2 infusion, but not with lower H2O2 doses. Exposure of the intact heart to low concentrations of H2O2, in a range that caused subtle oxidative injury, decreased ventricular ERP in a dose-dependent manner. Thus, H2O2 generation could contribute to ventricular arrhythmias, even in settings of sublethal and potentially reversible oxidative injury.  相似文献   
67.
The spectrophotometric phenazine methosulfate assay of succinate dehydrogenase was adapted to use with cauliflower (Brassica oleracea) and mung bean (Phaseolus aureus) mitochondria with suitable modifications to overcome the permeability barrier to the dye. Procedures in the literature for the isolation and sonic disruption of mitochondria from these sources were modified to assure maximal yield and stability of the enzyme. In tightly coupled mung bean mitochondria, as isolated, about half of the succinate dehydrogenase is in the deactivated state, and the enzyme is further extensively deactivated on sonication or freeze-thawing. In cauliflower mitochondria most of the enzyme is in the deactivated form, and little or no further deactivation occurs on sonication or freeze-thawing. Incubation of mitochondria from either source with succinate leads to full activation of the enzyme. The energy of activation for the conversion of the deactivated to the activated form in membranal preparations under the influence of substrate is about 30,000 cal/mole, essentially the same value as in animal tissues. Activation of the enzyme also occurs under the influence of a variety of other agents, among which the action of anions as activators is documented in the present paper. Activation is accompanied by the release of very tightly bound oxaloacetate. As in animal tissues, the enzyme appears to contain covalently bound flavin (histidyl 8α-FAD), and the turnover number is 19,400 moles of succinate oxidized/mole of histidyl flavin at pH 7.5, 38 C.  相似文献   
68.
The effect of various agents on the activation of succinate dehydrogenase in cauliflower (Brassica oleracea) and mung bean (Phaseolus aureus) mitochondria and in sonicated particles has been investigated. Reduced coenzyme Q10, inosine diphosphate, inosine triphosphate, acid pH, and anions activate the enzyme in mitochondria from higher plants in the same manner as in mammalian preparations. Significant differences have been detected in the behavior of plant and animal preparations in the effects of ATP, ADP, NADH, NAD-linked substrates, and of 2, 4-dinitrophenol on the state of activation of the dehydrogenase. In mammalian mitochondria ATP activates, whereas ADP does not, and the ATP effect is shown only in intact mitochondria. In mung bean and cauliflower mitochondria, both ATP and ADP activate and the effect is also shown in sonicated and frozen-thawed preparations. In sonicated mung bean mitochondria NADH causes complete activation, as in mammalian submitochondrial particles, but in sonicated cauliflower mitochondria activation by NADH is incomplete, as is also true of intact, anaerobic cauliflower mitochondria. Moreover, neither NAD-linked substrates nor a combination of these with NADH can fully activate the enzyme in cauliflower mitochondria. In contrast to mammalian mitochondria, succinate dehydrogenase is not deactivated in cauliflower or mung beam mitochondria under the oxidized conditions brought about by uncoupling of oxidative phosphorylation by 2,4-dinitrophenol.  相似文献   
69.
G protein-coupled receptors (GPCRs) represent the largest family of proteins involved in signal transduction. Here we present a bioluminescence resonance energy transfer (BRET) assay that directly monitors in real time the early interactions between human GPCRs and their cognate G-protein subunits in living human cells. In addition to detecting basal precoupling of the receptors to Galpha-, Gbeta- and Ggamma-subunits, BRET measured very rapid ligand-induced increases in the interaction between receptor and Galphabetagamma-complexes (t(1/2) approximately 300 ms) followed by a slower (several minutes) decrease, reflecting receptor desensitization. The agonist-promoted increase in GPCR-Gbetagamma interaction was highly dependent on the identity of the Galpha-subunit present in the complex. Therefore, this G protein-activity biosensor provides a novel tool to directly probe the dynamics and selectivity of receptor-mediated, G-protein activation-deactivation cycles that could be advantageously used to identify ligands for orphan GPCRs.  相似文献   
70.
Trade‐offs associated with sexual size dimorphism (SSD) are well documented across the Tree of Life. However, studies of SSD often do not consider potential investment trade‐offs between metabolically expensive structures under sexual selection and other morphological modules. Based on the expectations of the expensive tissue hypothesis, investment in one metabolically expensive structure should come at the direct cost of investment in another. Here, we examine allometric trends in the ontogeny of oyster toadfish (Opsanus tau) to test whether investment in structures known to have been influenced by strong sexual selection conform to these expectations. Despite recovering clear changes in the ontogeny of a sexually selected trait between males and females, we find no evidence for predicted ontogenetic trade‐offs with metabolically expensive organs. Our results are part of a growing body of work demonstrating that increased investment in one structure does not necessarily drive a wholesale loss of mass in one or more organs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号