首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2334篇
  免费   235篇
  2569篇
  2023年   31篇
  2022年   46篇
  2021年   104篇
  2020年   52篇
  2019年   62篇
  2018年   107篇
  2017年   66篇
  2016年   103篇
  2015年   179篇
  2014年   173篇
  2013年   167篇
  2012年   199篇
  2011年   200篇
  2010年   111篇
  2009年   96篇
  2008年   108篇
  2007年   101篇
  2006年   78篇
  2005年   61篇
  2004年   81篇
  2003年   75篇
  2002年   51篇
  2001年   20篇
  2000年   16篇
  1999年   15篇
  1998年   11篇
  1997年   9篇
  1996年   8篇
  1995年   7篇
  1994年   9篇
  1993年   5篇
  1992年   9篇
  1991年   8篇
  1990年   15篇
  1989年   10篇
  1988年   13篇
  1987年   9篇
  1986年   10篇
  1985年   12篇
  1984年   9篇
  1983年   7篇
  1982年   10篇
  1980年   5篇
  1979年   7篇
  1977年   7篇
  1976年   5篇
  1973年   8篇
  1972年   7篇
  1971年   5篇
  1968年   5篇
排序方式: 共有2569条查询结果,搜索用时 0 毫秒
31.
32.
Silver nanoparticles have been modified with self-assembled monolayers of hydroxyl-terminated long chain thiols and encapsulated with a silica shell. The resulting core–shell nanoparticles were used as optical labels for cell analysis using flow cytometry and microscopy. The excitation of plasmon resonances in nanoparticles results in strong depolarized scattering of visible light, permitting detection at the single nanoparticle level. The nanoparticles were modified with neutravidin via epoxide–azide coupling chemistry, to which biotinylated antibodies targeting cell surface receptors were bound. The nanoparticle labels exhibited long-term stability in solutions with high salt concentrations without aggregation or silver etching. Labeled cells exhibited two orders of magnitude enhancement of the scattering intensity compared with unlabeled cells.  相似文献   
33.
Vegetation in tropical Asia is highly diverse due to large environmental gradients and heterogeneity of landscapes. This biodiversity is threatened by intense land use and climate change. However, despite the rich biodiversity and the dense human population, tropical Asia is often underrepresented in global biodiversity assessments. Understanding how climate change influences the remaining areas of natural vegetation is therefore highly important for conservation planning. Here, we used the adaptive Dynamic Global Vegetation Model version 2 (aDGVM2) to simulate impacts of climate change and elevated CO2 on vegetation formations in tropical Asia for an ensemble of climate change scenarios. We used climate forcing from five different climate models for representative concentration pathways RCP4.5 and RCP8.5. We found that vegetation in tropical Asia will remain a carbon sink until 2099, and that vegetation biomass increases of up to 28% by 2099 are associated with transitions from small to tall woody vegetation and from deciduous to evergreen vegetation. Patterns of phenology were less responsive to climate change and elevated CO2 than biomes and biomass, indicating that the selection of variables and methods used to detect vegetation changes is crucial. Model simulations revealed substantial variation within the ensemble, both in biomass increases and in distributions of different biome types. Our results have important implications for management policy, because they suggest that large ensembles of climate models and scenarios are required to assess a wide range of potential future trajectories of vegetation change and to develop robust management plans. Furthermore, our results highlight open ecosystems with low tree cover as most threatened by climate change, indicating potential conflicts of interest between biodiversity conservation in open ecosystems and active afforestation to enhance carbon sequestration.  相似文献   
34.
35.
36.
Environmental DNA (eDNA) analysis is a powerful tool for remote detection of target organisms. However, obtaining quantitative and longitudinal information from eDNA data is challenging, requiring a deep understanding of eDNA ecology. Notably, if the various size components of eDNA decay at different rates, and we can separate them within a sample, their changing proportions could be used to obtain longitudinal dynamics information on targets. To test this possibility, we conducted an aquatic mesocosm experiment in which we separated fish-derived eDNA components using sequential filtration to evaluate the decay rate and changing proportion of various eDNA particle sizes over time. We then fit four alternative mathematical decay models to the data, building towards a predictive framework to interpret eDNA data from various particle sizes. We found that medium-sized particles (1–10 μm) decayed more slowly than other size classes (i.e., <1 and > 10 μm), and thus made up an increasing proportion of eDNA particles over time. We also observed distinct eDNA particle size distribution (PSD) between our Common carp and Rainbow trout samples, suggesting that target-specific assays are required to determine starting eDNA PSDs. Additionally, we found evidence that different sizes of eDNA particles do not decay independently, with particle size conversion replenishing smaller particles over time. Nonetheless, a parsimonious mathematical model where particle sizes decay independently best explained the data. Given these results, we suggest a framework to discern target distance and abundance with eDNA data by applying sequential filtration, which theoretically has both metabarcoding and single-target applications.  相似文献   
37.
Sea level rise (SLR) threatens coastal wetlands worldwide, yet the fate of individual wetlands will vary based on local topography, wetland morphology, sediment dynamics, hydrologic processes, and plant‐mediated feedbacks. Local variability in these factors makes it difficult to predict SLR effects across wetlands or to develop a holistic regional perspective on SLR response for a diversity of wetland types. To improve regional predictions of SLR impacts to coastal wetlands, we developed a model that addresses the scale‐dependent factors controlling SLR response and accommodates different levels of data availability. The model quantifies SLR‐driven habitat conversion within wetlands across a region by predicting changes in individual wetland hypsometry. This standardized approach can be applied to all wetlands in a region regardless of data availability, making it ideal for modeling SLR response across a range of scales. Our model was applied to 105 wetlands in southern California that spanned a broad range of typology and data availability. Our findings suggest that if wetlands are confined to their current extents, the region will lose 12% of marsh habitats (vegetated marsh and unvegetated flats) with 0.6 m of SLR (projected for 2050) and 48% with 1.7 m of SLR (projected for 2100). Habitat conversion was more drastic in wetlands with larger proportions of marsh habitats relative to subtidal habitats and occurred more rapidly in small lagoons relative to larger sites. Our assessment can inform management of coastal wetland vulnerability, improve understanding of the SLR drivers relevant to individual wetlands, and highlight significant data gaps that impede SLR response modeling across spatial scales. This approach augments regional SLR assessments by considering spatial variability in SLR response drivers, addressing data gaps, and accommodating wetland diversity, which will provide greater insights into regional SLR response that are relevant to coastal management and restoration efforts.  相似文献   
38.
Arctic-boreal landscapes are experiencing profound warming, along with changes in ecosystem moisture status and disturbance from fire. This region is of global importance in terms of carbon feedbacks to climate, yet the sign (sink or source) and magnitude of the Arctic-boreal carbon budget within recent years remains highly uncertain. Here, we provide new estimates of recent (2003–2015) vegetation gross primary productivity (GPP), ecosystem respiration (Reco), net ecosystem CO2 exchange (NEE; Reco − GPP), and terrestrial methane (CH4) emissions for the Arctic-boreal zone using a satellite data-driven process-model for northern ecosystems (TCFM-Arctic), calibrated and evaluated using measurements from >60 tower eddy covariance (EC) sites. We used TCFM-Arctic to obtain daily 1-km2 flux estimates and annual carbon budgets for the pan-Arctic-boreal region. Across the domain, the model indicated an overall average NEE sink of −850 Tg CO2-C year−1. Eurasian boreal zones, especially those in Siberia, contributed to a majority of the net sink. In contrast, the tundra biome was relatively carbon neutral (ranging from small sink to source). Regional CH4 emissions from tundra and boreal wetlands (not accounting for aquatic CH4) were estimated at 35 Tg CH4-C year−1. Accounting for additional emissions from open water aquatic bodies and from fire, using available estimates from the literature, reduced the total regional NEE sink by 21% and shifted many far northern tundra landscapes, and some boreal forests, to a net carbon source. This assessment, based on in situ observations and models, improves our understanding of the high-latitude carbon status and also indicates a continued need for integrated site-to-regional assessments to monitor the vulnerability of these ecosystems to climate change.  相似文献   
39.
An unprecedented series of organometallic HCV (hepatitis C virus) NS5A (nonstructural 5A protein) replication complex inhibitors that incorporates a 1,1′-ferrocenediyl scaffold was explored. This scaffold introduces the elements of linear flexibility and non-planar topology that are unconventional for this class of inhibitors. Data from 2-D NMR spectroscopic analyses of these complexes in solution support an anti (unstacked) arrangement of the pharmacophoric groups. Several complexes demonstrate single-digit picomolar in vitro activity in an HCV genotype-1b replicon system. One complex to arise from this investigation (10a) exhibits exceptional picomolar activity against HCV genotype 1a and 1b replicons, low hepatocellular cytotoxicity, and good pharmacokinetic properties in rat.  相似文献   
40.
Understanding how pathogenic organisms spread in the environment is crucial for the management of disease, yet knowledge of propagule dispersal and transmission in aquatic environments is limited. We conducted empirical studies using the aquatic virus, infectious hematopoietic necrosis virus (IHNV), to quantify infectious dose, shedding capacity, and virus destruction rates in order to better understand the transmission of IHN virus among Atlantic salmon marine net-pen aquaculture. Transmission of virus and subsequent mortality in Atlantic salmon post-smolts was initiated with as low as 10 plaque forming units (pfu) ml−1. Virus shedding from IHNV infected Atlantic salmon was detected before the onset of visible signs of disease with peak shed rates averaging 3.2×107 pfu fish−1 hour−1 one to two days prior to mortality. Once shed into the marine environment, the abundance of free IHNV is modulated by sunlight (UV A and B) and the growth of natural biota present in the seawater. Virus decayed very slowly in sterilized seawater while rates as high as k =  4.37 d−1 were observed in natural seawater. Decay rates were further accelerated when exposed to sunlight with virus infectivity reduced by six orders of magnitude within 3 hours of full sunlight exposure. Coupling the IHNV transmission parameter estimates determined here with physical water circulation models, will increase the understanding of IHNV dispersal and provide accurate geospatial predictions of risk for IHNV transmission from marine salmon sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号