首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   939篇
  免费   113篇
  2021年   20篇
  2020年   10篇
  2019年   7篇
  2018年   11篇
  2017年   5篇
  2016年   8篇
  2015年   36篇
  2014年   20篇
  2013年   28篇
  2012年   31篇
  2011年   41篇
  2010年   28篇
  2009年   25篇
  2008年   32篇
  2007年   48篇
  2006年   46篇
  2005年   31篇
  2004年   28篇
  2003年   39篇
  2002年   31篇
  2001年   29篇
  2000年   34篇
  1999年   25篇
  1998年   19篇
  1997年   18篇
  1996年   16篇
  1995年   8篇
  1994年   12篇
  1993年   13篇
  1992年   42篇
  1991年   23篇
  1990年   32篇
  1989年   23篇
  1988年   19篇
  1987年   20篇
  1986年   20篇
  1985年   14篇
  1984年   14篇
  1983年   18篇
  1982年   10篇
  1981年   8篇
  1980年   12篇
  1979年   6篇
  1978年   11篇
  1975年   5篇
  1974年   13篇
  1973年   10篇
  1972年   10篇
  1971年   5篇
  1970年   8篇
排序方式: 共有1052条查询结果,搜索用时 31 毫秒
81.
We examined the hypothesis that the procumbent growth habit of the rare, columnar cactus Stenocereus eruca is in part the result of a diminution of the mechanical properties of stem tissues by comparing the properties of S. eruca plants with those of the putatively closely related semi-erect shrub S. gummosus. Intact stems and surgically removed anatomically comparable regions of the stems of both species were tested in bending and tension to determine their Young's modulus and breaking stress. A computer program was used to evaluate the contribution of each region to the capacity of entire stems to resist bending forces. Our analyses indicate that the principal stiffening agent in the stems of both species is a peripheral tissue complex (= epidermis and collenchyma in the primary plant body) that has a significantly higher tensile breaking stress and greater extensibility for S. gummosus than that of S. eruca. Computer simulations indicate that the wood of either species contributes little to bending stiffness, except in very old portions of S. gummosus stems, because of its small volume and central location in the stem. These and other observations are interpreted to support the hypothesis that S. eruca evolved a procumbent growth habit as the result of manifold developmental alterations some of which reduced the capacity of tissues to support the weight of stems.  相似文献   
82.
Overexpression of the 22-kDa peripheral myelin protein (PMP22) causes the inherited peripheral neuropathy, Charcot-Marie-Tooth disease type 1A (CMT1A). In an attempt to alter PMP22 gene expression as a possible therapeutic strategy for CMT1A, antiparallel triplex-forming oligonucleotides (TFO) were designed to bind to purine-rich target sequences in the two PMP22 gene promoters, P1 and P2. Target region I in P1 and region V in P2 were also shown to specifically bind proteins in mammalian nuclear extracts. Competition for binding of these targets by TFO vs. protein(s) was compared by exposing proteins to their target sequences after triplex formation (passive competition) or by allowing TFO and proteins to simultaneously compete for the same targets (active competition). In both formats, TFO were shown to competitively interfere with the binding of protein to region I. Oligonucleotides directed to region V competed for protein binding by a nontriplex-mediated mechanism, most likely via the formation of higher-order, manganese-destabilizable structures. Given that the activity of the P1 promoter is closely linked to peripheral nerve myelination, TFO identified here could serve as useful reagents in the investigation of promoter function, the role of PMP22 in myelination, and possibly as rationally designed drugs for the therapy of CMT1A. The nontriplex-mediated action of TFO directed at the P2 promoter may have wider implications for the use of such oligonucleotides in vivo.  相似文献   
83.
A series of peptides containing histidine residues were designed as potential hybridization rate enhancers within a polymeric matrix of DNA microarrays. The polymeric matrix modified with these peptides showed strong attraction to DNA molecules under conditions of induction. DNA probes on the peptide-modified sites rapidly hybridized to their complementary targets with single base pair mismatch discrimination.  相似文献   
84.
85.
86.
87.
Members of the vasodilator-stimulated phosphoprotein (VASP) family are important regulators of actin cytoskeletal dynamics whose functions and protein-protein interactions are regulated by phosphorylation by the cAMP-dependent protein kinase (PKA). Herein, we show that phosphorylation of VASP is dynamically regulated by cellular adhesion to extracellular matrix. Detachment of cells stimulated PKA activity and induced PKA-dependent phosphorylation of VASP and the related murine-Enabled (Mena) protein. VASP and Mena were rapidly dephosphorylated immediately following reattachment but showed an intermediate level of phosphorylation during active cell spreading. This pattern correlated closely with adhesion-dependent changes in PKA activity. The in vivo interaction of VASP with the Abl tyrosine kinase, shown here for the first time, was readily apparent in adherent cells, lost following cellular detachment, and induced upon reattachment to matrix. Importantly, inhibition of PKA activity prevented phosphorylation of VASP and dissociation of VASP-Abl complexes after cellular detachment, whereas activation of PKA completely eliminated the co-immunoprecipitation of Abl activity with VASP. These data establish a new biochemical link between cell adhesion and regulation of VASP proteins and provide the first demonstration of a regulated interaction between VASP and Abl in mammalian cells.  相似文献   
88.
89.
90.
The machinery mediating chromosome condensation is poorly understood. To begin to dissect the in vivo function(s) of individual components, we monitored mitotic chromosome structure in mutants of condensin, cohesin, histone H3, and topoisomerase II (topo II). In budding yeast, both condensation establishment and maintenance require all of the condensin subunits, but not topo II activity or phospho-histone H3. Structural maintenance of chromosome (SMC) protein 2, as well as each of the three non-SMC proteins (Ycg1p, Ycs4p, and Brn1p), was required for chromatin binding of the condensin complex in vivo. Using reversible condensin alleles, we show that chromosome condensation does not involve an irreversible modification of condensin or chromosomes. Finally, we provide the first evidence of a mechanistic link between condensin and cohesin function. A model discussing the functional interplay between cohesin and condensin is presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号