首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   939篇
  免费   113篇
  1052篇
  2021年   20篇
  2020年   10篇
  2019年   7篇
  2018年   11篇
  2017年   5篇
  2016年   8篇
  2015年   36篇
  2014年   20篇
  2013年   28篇
  2012年   31篇
  2011年   41篇
  2010年   28篇
  2009年   25篇
  2008年   32篇
  2007年   48篇
  2006年   46篇
  2005年   31篇
  2004年   28篇
  2003年   39篇
  2002年   31篇
  2001年   29篇
  2000年   34篇
  1999年   25篇
  1998年   19篇
  1997年   18篇
  1996年   16篇
  1995年   8篇
  1994年   12篇
  1993年   13篇
  1992年   42篇
  1991年   23篇
  1990年   32篇
  1989年   23篇
  1988年   19篇
  1987年   20篇
  1986年   20篇
  1985年   14篇
  1984年   14篇
  1983年   18篇
  1982年   10篇
  1981年   8篇
  1980年   12篇
  1979年   6篇
  1978年   11篇
  1975年   5篇
  1974年   13篇
  1973年   10篇
  1972年   10篇
  1971年   5篇
  1970年   8篇
排序方式: 共有1052条查询结果,搜索用时 15 毫秒
101.
Individual plants of several Amelanchier taxa contain many polymorphic nucleotide sites in the internal transcribed spacers (ITS) of nuclear ribosomal DNA (nrDNA). This polymorphism is unusual because it is not recent in origin and thus has resisted homogenization by concerted evolution. Amelanchier ITS sequence polymorphism is hypothesized to be the result of gene flow between two major North American clades resolved by phylogenetic analysis of ITS sequences. Western North American species plus A. humilis and A. sanguinea of eastern North America form one clade (A), and the remaining eastern North American Amelanchier make up clade B. Five eastern North American taxa are polymorphic at many of the nucleotide sites where clades A and B have diverged and are thought to be of hybrid origin, with A. humilis or A. sanguinea as one parent and various members of clade B as the other parent. Morphological evidence suggests that A. humilis is one of the parents of one of the polymorphic taxa, a microspecies that we refer to informally as A. "erecta." Sequences of 21 cloned copies of the ITS1- 5.8S gene-ITS2 region from one A. "erecta" individual are identical to A. humilis sequence or to the clade B consensus sequence, or they are apparent recombinants of A. humilis and clade B ITS repeats. Amelanchier "erecta" and another polymorphic taxon are suspected to be relatively old because both grow several hundred kilometers beyond the range of one of their parents. ITS sequence polymorphisms have apparently persisted in these two taxa perhaps because of polyploidy and/or agamospermy (asexual seed production), which are prevalent in the genus.   相似文献   
102.
Using an interspecies backcross, we have mapped the HOX-5 and surfeit (surf) gene clusters within the proximal portion of mouse chromosome 2. While the HOX-5 cluster of homeobox-containing genes has been localized to chromosome 2, bands C3-E1, by in situ hybridization, its more precise position relative to the genes and cloned markers of chromosome 2 was not known. Surfeit, a tight cluster of at least six highly conserved “housekeeping” genes, has not been previously mapped in mouse, but has been localized to human chromosome 9q, a region of the human genome with strong homology to proximal mouse chromosome 2. The data presented here place HOX-5 in the vicinity of the closely linked set of developmental mutations rachiterata, lethargic, and fidget and place surf close to the proto-oncogene Abl, near the centromere of chromosome 2.  相似文献   
103.
E2F plays critical roles in cell cycle progression by regulating the expression of genes involved in nucleotide synthesis, DNA replication, and cell cycle control. We show that the combined loss of E2F1 and E2F2 in mice leads to profound cell-autonomous defects in the hematopoietic development of multiple cell lineages. E2F2 mutant mice show erythroid maturation defects that are comparable with those observed in patients with megaloblastic anemia. Importantly, hematopoietic defects observed in E2F1/E2F2 double-knockout (DKO) mice appear to result from impeded S phase progression in hematopoietic progenitor cells. During DKO B-cell maturation, differentiation beyond the large pre-BII-cell stage is defective, presumably due to failed cell cycle exit, and the cells undergo apoptosis. However, apoptosis appears to be the consequence of failed maturation, not the cause. Despite the accumulation of hematopoietic progenitor cells in S phase, the combined loss of E2F1 and E2F2 results in significantly decreased expression and activities of several E2F target genes including cyclin A2. Our results indicate specific roles for E2F1 and E2F2 in the induction of E2F target genes, which contribute to efficient expansion and maturation of hematopoietic progenitor cells. Thus, E2F1 and E2F2 play essential and redundant roles in the proper coordination of cell cycle progression with differentiation which is necessary for efficient hematopoiesis.  相似文献   
104.
105.
106.
107.
A theoretical analysis was developed to predict molecular hybridization rates for microarrays where samples flow through microfluidic channels and for conventional microarrays where samples remain stationary during hybridization. The theory was validated by using a multiplexed microfluidic microarray where eight samples were hybridized simultaneously against eight probes using 60-mer DNA strands. Mass transfer coefficients ranged over three orders of magnitude where either kinetic reaction rates or molecular diffusion rates controlled overall hybridization rates. Probes were printed using microfluidic channels and also conventional spotting techniques. Consistent with the theoretical model, the microfluidic microarray demonstrated the ability to print DNA probes in less than 1 min and to detect 10-pM target concentrations with hybridization times in less than 5 min.  相似文献   
108.
Four monoclonal antibodies that are directed against antigens present in sperm and absent from other worm tissues were characterized. Antibody TR20 is directed against the major sperm proteins, a family of small, abundant, cytoplasmic proteins that have been previously described (Klass, M. R., and D. Hirsh, 1981, Dev. Biol., 84:299-312; Burke, D. J., and S. Ward, 1983, J. Mol. Biol., 171:1-29). Three other antibodies, SP56, SP150, and TR11, are all directed against the same set of minor sperm polypeptides that range in size from 29 to 215 kD. More than eight different sperm polypeptides are antigenic by both immunotransfer and immunoprecipitation assays. The three antibodies are different immunoglobulin subclasses, yet they compete with each other for antigen binding so they are directed against the same antigenic determinant on the multiple sperm proteins. This antigenic determinant is sensitive to any of six different proteases, is insensitive to periodate oxidation or N-glycanase digestion, and is detectable on a polypeptide synthesized in vitro. Therefore, the antigenic determinant resides in the polypeptide chain. However, peptide fragments of the proteins are not antigenic, thus the determinant is likely to be dependent on polypeptide conformation. The antigenic determinant shared by these proteins could represent a common structural feature of importance to the localization or cellular specificity of these proteins.  相似文献   
109.
Centromere position in budding yeast: evidence for anaphase A.   总被引:6,自引:2,他引:6       下载免费PDF全文
Although general features of chromosome movement during the cell cycle are conserved among all eukaryotic cells, particular aspects vary between organisms. Understanding the basis for these variations should provide significant insight into the mechanism of chromosome movement. In this context, establishing the types of chromosome movement in the budding yeast Saccharomyces cerevisiae is important since the complexes that mediate chromosome movement (microtubule organizing centers, spindles, and kinetochores) appear much simpler in this organism than in many other eukaryotic cells. We have used fluorescence in situ hybridization to begin an analysis of chromosome movement in budding yeast. Our results demonstrate that the position of yeast centromeres changes as a function of the cell cycle in a manner similar to other eukaryotes. Centromeres are skewed to the side of the nucleus containing the spindle pole in G1; away from the poles in mid-M and clustered near the poles in anaphase and telophase. The change in position of the centromeres relative to the spindle poles supports the existence of anaphase A in budding yeast. In addition, an anaphase A-like activity independent of anaphase B was demonstrated by following the change in centromere position in telophase-arrested cells upon depolymerization and subsequent repolymerization of microtubules. The roles of anaphase A activity and G1 centromere positioning in the segregation of budding yeast chromosomes are discussed. The fluorescence in situ hybridization methodology and experimental strategies described in this study provide powerful new tools to analyze mutants defective in specific kinesin-like molecules, spindle components, and centromere factors, thereby elucidating the mechanism of chromosome movement.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号