首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   658篇
  免费   57篇
  2021年   15篇
  2019年   7篇
  2018年   10篇
  2017年   4篇
  2016年   10篇
  2015年   16篇
  2014年   19篇
  2013年   25篇
  2012年   30篇
  2011年   30篇
  2010年   15篇
  2009年   15篇
  2008年   26篇
  2007年   28篇
  2006年   26篇
  2005年   27篇
  2004年   22篇
  2003年   20篇
  2002年   18篇
  2001年   21篇
  2000年   23篇
  1999年   15篇
  1998年   15篇
  1997年   4篇
  1996年   7篇
  1995年   7篇
  1994年   6篇
  1993年   4篇
  1992年   13篇
  1991年   12篇
  1990年   8篇
  1989年   13篇
  1988年   11篇
  1987年   27篇
  1986年   8篇
  1985年   12篇
  1984年   11篇
  1983年   5篇
  1982年   9篇
  1981年   9篇
  1980年   8篇
  1979年   17篇
  1978年   8篇
  1977年   11篇
  1975年   6篇
  1974年   6篇
  1973年   5篇
  1972年   5篇
  1971年   10篇
  1968年   5篇
排序方式: 共有715条查询结果,搜索用时 15 毫秒
81.
A M Albertini  M Hofer  M P Calos  J H Miller 《Cell》1982,29(2):319-328
Using lacl-Z fusion strains of Escherichia coli we have devised systems that detect deletions of varying lengths. We examined deletions 700-1000 base pairs long, and genetically characterized over 250 spontaneous deletions. Of these, we analyzed 24 by direct DNA sequencing and 18 by inspection of restriction fragment patterns. Deletions of this size occur almost exclusively at short repeated sequences in both (recA+ and recA- strain backgrounds, but are detected 25-fold more frequently in a recA+ background. The frequency of deletion formation correlates with the extent of homology between the short repeated sequences, although other factors may be involved. The largest hotspot, which accounts for 60% of the deletions detected, involves the largest homology in the system (14 of 17 base pairs). Altering a single base pair within this homology reduces deletion incidence by an order of magnitude. We discuss possible mechanisms of deletion formation and consider its relationship to the excision of transposable elements.  相似文献   
82.
During development, cortical plasticity is associated with the rearrangement of excitatory connections. While these connections become more stable with age, plasticity can still be induced in the adult cortex. Here we provide evidence that structural plasticity of?inhibitory synapses onto pyramidal neurons is?a major component of plasticity in the adult neocortex. In?vivo two-photon imaging was used to monitor the formation and elimination of fluorescently labeled inhibitory structures on pyramidal neurons. We find that ocular dominance plasticity in the adult visual cortex is associated with rapid inhibitory synapse loss, especially of those present on dendritic spines. This occurs not only with monocular deprivation but also with subsequent restoration of binocular vision. We propose that in the adult visual cortex the experience-induced loss of inhibition may effectively strengthen specific visual inputs with limited need for rearranging the excitatory circuitry.  相似文献   
83.
Trypanosoma brucei causes African sleeping sickness, a disease for which existing chemotherapies are limited by their toxicity or lack of efficacy. We have found that four parasites, including T. brucei, contain genes where two or four thymidine kinase (TK) sequences are fused into a single open reading frame. The T. brucei full-length enzyme as well as its two constituent parts, domain 1 and domain 2, were separately expressed and characterized. Of potential interest for nucleoside analog development, T. brucei TK was less discriminative against purines than human TK1 with the following order of catalytic efficiencies: thymidine > deoxyuridine ≫ deoxyinosine > deoxyguanosine. Proteins from the TK1 family are generally dimers or tetramers, and the quaternary structure is linked to substrate affinity. T. brucei TK was primarily monomeric but can be considered a two-domain pseudodimer. Independent kinetic analysis of the two domains showed that only domain 2 was active. It had a similar turnover number (kcat) as the full-length enzyme but could not self-dimerize efficiently and had a 5-fold reduced thymidine/deoxyuridine affinity. Domain 1, which lacks three conserved active site residues, can therefore be considered a covalently attached structural partner that enhances substrate binding to domain 2. A consequence of the non-catalytic role of domain 1 is that its active site residues are released from evolutionary pressure, which can be advantageous for developing new catalytic functions. In addition, nearly identical 89-bp sequences present in both domains suggest that the exchange of genetic material between them can further promote evolution.  相似文献   
84.
Interferon (IFN) signaling is crucial for antiviral immunity. While type I IFN signaling is mediated by STAT1, STAT2, and IRF9, type II IFN signaling requires only STAT1. Here, we studied the roles of these signaling factors in the host response to systemic infection with lymphocytic choriomeningitis virus (LCMV). In wild-type (WT) mice and mice lacking either STAT2 or IRF9, LCMV infection was nonlethal, and the virus either was cleared (WT) or established persistence (STAT2 knockout [KO] and IRF9 KO). However, in the case of STAT1 KO mice, LCMV infection was lethal and accompanied by severe multiorgan immune pathology, elevated expression of various cytokine genes in tissues, and cytokines in the serum. This lethal phenotype was unaltered by the coabsence of the gamma interferon (IFN-γ) receptor and hence was not dependent on IFN-γ. Equally, the disease was not due to a combined defect in type I and type II IFN signaling, as IRF9 KO mice lacking the IFN-γ receptor survived infection with LCMV. Clearance of LCMV is mediated normally by CD8(+) T cells. However, the depletion of these cells in LCMV-infected STAT1 KO mice was delayed, but did not prevent, lethality. In contrast, depletion of CD4(+) T cells prevented lethality in LCMV-infected STAT1 KO mice and was associated with a reduction in tissue immune pathology. These studies highlight a fundamental difference in the role of STAT1 versus STAT2 and IRF9. While all three factors are required to limit viral replication and spread, only STAT1 has the unique function of preventing the emergence of a lethal antiviral CD4(+) T-cell response.  相似文献   
85.
The deer ked (Lipoptena cervi) is an ectoparasitic fly on cervids that has expanded its distribution rapidly in Northern Europe. However, the regulating biotic factors such as predation remain unknown. The host‐independent pupal stage of the fly lasts for several months. Blackish pupae are visible against snow, especially on the bedding sites of hosts, and are thus exposed to predators. To evaluate the role of predation on the invasion dynamics and evolution of L. cervi, we monitored pupal predation on artificial bedding sites in three geographical areas in Finland during winter. We explored: (1) possible predators; (2) magnitude of predation; and (3) whether predation risk is affected by host‐derived cues. We demonstrate that pupae are predated by a number of tit species. Any reddish brown snow discoloration on bedding sites, indicating heavy infestation of the host, serves as an exploitable cue for avian predators, thereby increasing the risk of pupal predation. The ability of tits to use this host‐derived cue seems to be dependent on the prevalence of L. cervi and the period of invasion history, which suggests that it may be a learned behavioural response. Predation by tits may potentially affect the L. cervi population dynamics locally. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 275–286.  相似文献   
86.
The inheritance of flower color in pea (Pisum sativum) has been studied for more than a century, but many of the genes corresponding to these classical loci remain unidentified. Anthocyanins are the main flower pigments in pea. These are generated via the flavonoid biosynthetic pathway, which has been studied in detail and is well conserved among higher plants. A previous proposal that the Clariroseus (B) gene of pea controls hydroxylation at the 5' position of the B ring of flavonoid precursors of the anthocyanins suggested to us that the gene encoding flavonoid 3',5'-hydroxylase (F3'5'H), the enzyme that hydroxylates the 5' position of the B ring, was a good candidate for B. In order to test this hypothesis, we examined mutants generated by fast neutron bombardment. We found allelic pink-flowered b mutant lines that carried a variety of lesions in an F3'5'H gene, including complete gene deletions. The b mutants lacked glycosylated delphinidin and petunidin, the major pigments present in the progenitor purple-flowered wild-type pea. These results, combined with the finding that the F3'5'H gene cosegregates with b in a genetic mapping population, strongly support our hypothesis that the B gene of pea corresponds to a F3'5'H gene. The molecular characterization of genes involved in pigmentation in pea provides valuable anchor markers for comparative legume genomics and will help to identify differences in anthocyanin biosynthesis that lead to variation in pigmentation among legume species.  相似文献   
87.
88.
Endotoxin (Lipopolysaccharide, LPS) is a potent inducer of inflammation and there is various LPS contamination in the environment, being a trigger of lung diseases and exacerbation. The objective of this study was to assess the time course of inflammation and the sensitivities of the airways and alveoli to targeted LPS inhalation in order to understand the role of LPS challenge in airway disease.In healthy volunteers without any bronchial hyperresponsiveness we targeted sequentially 1, 5 and 20 μg LPS to the airways and 5 μg LPS to the alveoli using controlled aerosol bolus inhalation. Inflammatory parameters were assessed during a 72 h time period. LPS deposited in the airways induced dose dependent systemic responses with increases of blood neutrophils (peaking at 6 h), Interleukin-6 (peaking at 6 h), body temperature (peaking at 12 h), and CRP (peaking at 24 h). 5 μg LPS targeted to the alveoli caused significantly stronger effects compared to 5 μg airway LPS deposition. Local responses were studied by measuring lung function (FEV(1)) and reactive oxygen production, assessed by hydrogen peroxide (H(2)O(2)) in fractionated exhaled breath condensate (EBC). FEV(1) showed a dose dependent decline, with lowest values at 12 h post LPS challenge. There was a significant 2-fold H(2)O(2) induction in airway-EBC at 2 h post LPS inhalation. Alveolar LPS targeting resulted in the induction of very low levels of EBC-H(2)O(2).Targeting LPS to the alveoli leads to stronger systemic responses compared to airway LPS targeting. Targeted LPS inhalation may provide a novel model of airway inflammation for studying the role of LPS contamination of air pollution in lung diseases, exacerbation and anti-inflammatory drugs.  相似文献   
89.
During their symbiotic interaction with rhizobia, legume plants develop symbiosis-specific organs on their roots, called nodules, that house nitrogen-fixing bacteria. The molecular mechanisms governing the identity and maintenance of these organs are unknown. Using Medicago truncatula nodule root (noot) mutants and pea (Pisum sativum) cochleata (coch) mutants, which are characterized by the abnormal development of roots from the nodule, we identified the NOOT and COCH genes as being necessary for the robust maintenance of nodule identity throughout the nodule developmental program. NOOT and COCH are Arabidopsis thaliana BLADE-ON-PETIOLE orthologs, and we have shown that their functions in leaf and flower development are conserved in M. truncatula and pea. The identification of these two genes defines a clade in the BTB/POZ-ankyrin domain proteins that shares conserved functions in eudicot organ development and suggests that NOOT and COCH were recruited to repress root identity in the legume symbiotic organ.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号