首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   987篇
  免费   92篇
  2021年   7篇
  2020年   7篇
  2018年   12篇
  2017年   10篇
  2016年   21篇
  2015年   26篇
  2014年   42篇
  2013年   44篇
  2012年   41篇
  2011年   45篇
  2010年   29篇
  2009年   29篇
  2008年   46篇
  2007年   36篇
  2006年   37篇
  2005年   32篇
  2004年   34篇
  2003年   28篇
  2002年   38篇
  2001年   36篇
  2000年   27篇
  1999年   23篇
  1998年   21篇
  1997年   7篇
  1996年   10篇
  1995年   15篇
  1994年   7篇
  1993年   17篇
  1992年   11篇
  1991年   10篇
  1990年   22篇
  1989年   18篇
  1988年   16篇
  1987年   16篇
  1986年   11篇
  1985年   19篇
  1984年   11篇
  1983年   17篇
  1982年   9篇
  1978年   13篇
  1977年   12篇
  1976年   11篇
  1975年   9篇
  1974年   8篇
  1973年   21篇
  1972年   14篇
  1971年   13篇
  1970年   6篇
  1969年   6篇
  1968年   7篇
排序方式: 共有1079条查询结果,搜索用时 500 毫秒
861.
Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations have been used to elucidate differences in the sulfur K-edge spectra of three pairs of related compounds: methionine and , cystine and (±)6-thioctic amide, and (Me)2SO3 and (CH2)2SO3. TD-DFT is shown to accurately reproduce all the experimental XAS spectra. The 2 eV energy difference in the sulfur K-edge rising edge position between methionine and trimethylsulfonium is shown to derive from changes in bonding rather than the increase in effective nuclear charge. A similar insensitivity to effective nuclear charge is found in the XAS spectra of cystine and (±)6-thioctic amide. These surprising results are traced back to the fact that XAS spectra reflect orbital energy differences, rather than a measure of the atomic potential. The change in atomic potential following oxidation or reduction affects the core and valence orbitals almost equally. In all cases DFT calculations showed that the dramatic differences in sulfur K-edge spectra found between functional groups in alternative molecular environments derive from the variations in orbital mixing and energies following from bonding. However, XAS rising-edge energy positions have a near linear correlation with oxidation state. This is attributed to the fact that bond strength typically increases with oxidation state. Therefore, although XAS rising-edge energies are an approximate measure of the oxidation state of the absorbing atom, it is important to recognize that the correlation of XAS edge energy with effective nuclear charge is not direct. This result is finally applied to the question of quantitative sulfur speciation in complex materials of chemical, biological, or geological origin.  相似文献   
862.
In Helicobacter pylori the stringent response is mediated solely by spoT. The spoT gene is known to encode (p)ppGpp synthetase activity and is required for H. pylori survival in the stationary phase. However, neither the hydrolase activity of the H. pylori SpoT protein nor the role of SpoT in the regulation of growth during serum starvation and intracellular survival of H. pylori in macrophages has been determined. In this study, we examined the effects of SpoT on these factors. Our results showed that the H. pylori spoT gene encodes a bifunctional enzyme with both a hydrolase activity and the previously described (p)ppGpp synthetase activity, as determined by introducing the gene into Escherichia coli relA and spoT defective strains. Also, we found that SpoT mediates a serum starvation response, which not only restricts the growth but also maintains the helical morphology of H. pylori. Strikingly, a spoT null mutant was able to grow to a higher density in serum-free medium than the wild-type strain, mimicking the “relaxed” growth phenotype of an E. coli relA mutant during amino acid starvation. Finally, SpoT was found to be important for intracellular survival in macrophages during phagocytosis. The unique role of (p)ppGpp in cell growth during serum starvation, in the stress response, and in the persistence of H. pylori is discussed.  相似文献   
863.
In many organisms, phosphatase expression and phosphate (P) uptake are coordinately regulated by the Pho regulon. In Myxococcus xanthus P limitation initiates multicellular development, a process associated with changes in phosphatase expression. We sought here to characterize the link between P acquisition and development in this bacterium, an organism capable of preying upon other microorganisms as a sole nutrient source. M. xanthus seems to possess no significant internal P stores, as reducing the P concentration to less than 10 μM retarded growth within one doubling time. Pyrophosphate, polyphosphate, and glyceraldehyde-3-phosphate could support growth as sole P sources, although many other P-containing biomolecules could not (including nucleic acids and phospholipids). Several Pho regulon promoters were found to be highly active during vegetative growth, and P limitation specifically induced pstSCAB, AcPA1, and pho3 promoter activity and repressed pit expression. Enhanced pstSCAB and pho3 promoter activities in a phoP4 mutant (in the presence of high and low concentrations of P) suggested that PhoP4 acts as a repressor of these genes. However, in a phoP4 background, the activities of pstSCAB remained P regulated, suggesting that there is additional regulation by a P-sensitive factor. Initiation of multicellular development caused immediate down-regulation of Pho regulon genes and caused pstSCAB and pho3 promoter activities to become P insensitive. Hence, P acquisition components of the M. xanthus Pho regulon are regulated by both P availability and development, with developmental down-regulation overriding up-regulation by P limitation. These observations suggest that when development is initiated, subsequent changes in P availability become irrelevant to the population, which presumably has sufficient intrinsic P to ensure completion of the developmental program.  相似文献   
864.
Disturbance, productivity, and natural enemies are significant determinants of the evolution of diversity, but their interactive effect remains unresolved. We develop a simple, qualitative model assuming trade-offs between growth rate, competitive ability and parasite resistance, to address the interactive effects of these variables on the evolution of host diversity. Consistent with previous studies our model predicts maximum diversity at intermediate levels of disturbance and productivity in the absence of parasitism. However, parasites break down these unimodal diversity relationships with productivity and disturbance, as selection for parasite resistance reduces the importance of growth rate-competitive ability trade-offs. We tested these predictions using the bacterium Pseudomonas fluorescens, which undergoes an adaptive radiation into spatial niche specialists under laboratory conditions. This is the first study of adaptive radiation in response to experimental manipulation of the three-way interaction between productivity, disturbance, and natural enemies. As hypothesized, unimodal diversity relationships with disturbance and productivity were weakened or disappeared in the presence of parasitic phages. This was the result of phages increasing diversity at environmental extremes, by imposing selection for phage-resistant variants, but decreasing diversity in less stressful environments, probably through reductions in resource competition. Phages had a net effect of increasing host diversity. Parasites and other natural enemies are therefore likely to have a large effect in mitigating the influence of other environmental variables on the evolution and maintenance of diversity.  相似文献   
865.
Some of the critical properties for a successful orthopedic or dental implant material are its biocompatibility and bioactivity. Pure titanium (Ti) and zirconium (Zr) are widely accepted as biocompatible metals, due to their non-toxicity. While the bioactivity of Ti and some Ti alloys has been extensively investigated, there is still insufficient data for Zr and titanium-zirconium (TiZr) alloys. In the present study, the bioactivity, that is, the apatite forming ability on the alkali and heat treated surfaces of Ti, Zr, and TiZr alloy in simulated body fluid (SBF), was studied. In particular, the effect of the surface roughness characteristics on the bioactivity was evaluated for the first time. The results indicate that the pretreated Ti, Zr and TiZr alloy could form apatite coating on their surfaces. It should be noted that the surface roughness also critically affected the bioactivity of these pretreated metallic samples. A surface morphology with an average roughness of approximately 0.6 microm led to the fastest apatite formation on the metal surfaces. This apatite layer on the metal surface is expected to bond to the surrounding bones directly after implantation.  相似文献   
866.
867.
868.
869.
Compared with the plethora of financial information about the publicly traded elite of the biotech world, little is known about the multitude of private biotech firms. Here, Nature Biotechnology's Editor-at-Large provides an analysis of the financial performance of the privately held biotech sector.  相似文献   
870.
Natural populations of wild cabbage (Brassica oleracea) show significant qualitative diversity in heritable aliphatic glucosinolates, a class of secondary metabolites involved in defence against herbivore attack. One candidate mechanism for the maintenance of this diversity is that differential responses among herbivore species result in a net fitness balance across plant chemotypes. Such top-down differential selection would be promoted by consistent responses of herbivores to glucosinolates, temporal variation in herbivore abundance, and fitness impacts of herbivore attack on plants varying in glucosinolate profile. A 1-year survey across 12 wild cabbage populations demonstrated differential responses of herbivores to glucosinolates. We extended this survey to investigate the temporal consistency of these responses, and the extent of variation in abundance of key herbivores. Within plant populations, the aphid Brevicoryne brassicae consistently preferred plants producing the glucosinolate progoitrin. Among populations, increasing frequencies of sinigrin production correlated positively with herbivory by whitefly Aleyrodes proletella and negatively with herbivory by snails. Two Pieris butterfly species showed no consistent response to glucosinolates among years. Rates of herbivory varied significantly among years within populations, but the frequency of herbivory at the population scale varied only for B. brassicae. B. brassicae emerges as a strong candidate herbivore to impose differential selection on glucosinolates, as it satisfies the key assumptions of consistent preferences and heterogeneity in abundance. We show that variation in plant secondary metabolites structures the local herbivore community and that, for some key species, this structuring is consistent over time. We discuss the implications of these patterns for the maintenance of diversity in plant defence chemistry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号