首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   801篇
  免费   106篇
  2022年   5篇
  2020年   5篇
  2019年   5篇
  2017年   8篇
  2015年   21篇
  2014年   25篇
  2013年   28篇
  2012年   31篇
  2011年   23篇
  2010年   24篇
  2009年   19篇
  2008年   30篇
  2007年   27篇
  2006年   35篇
  2005年   28篇
  2004年   39篇
  2003年   36篇
  2002年   32篇
  2001年   30篇
  2000年   24篇
  1999年   25篇
  1998年   17篇
  1997年   16篇
  1996年   19篇
  1995年   20篇
  1994年   13篇
  1993年   11篇
  1992年   34篇
  1991年   14篇
  1990年   6篇
  1989年   17篇
  1988年   18篇
  1987年   14篇
  1986年   16篇
  1985年   16篇
  1984年   12篇
  1983年   14篇
  1982年   7篇
  1981年   10篇
  1980年   4篇
  1979年   12篇
  1978年   13篇
  1977年   7篇
  1976年   4篇
  1975年   9篇
  1973年   14篇
  1972年   14篇
  1970年   4篇
  1969年   5篇
  1957年   5篇
排序方式: 共有907条查询结果,搜索用时 15 毫秒
51.
Proteus mirabilis, a leading cause of catheter-associated urinary tract infection (CaUTI), differentiates into swarm cells that migrate across catheter surfaces and medium solidified with 1.5% agar. While many genes and nutrient requirements involved in the swarming process have been identified, few studies have addressed the signals that promote initiation of swarming following initial contact with a surface. In this study, we show that P. mirabilis CaUTI isolates initiate swarming in response to specific nutrients and environmental cues. Thirty-three compounds, including amino acids, polyamines, fatty acids, and tricarboxylic acid (TCA) cycle intermediates, were tested for the ability to promote swarming when added to normally nonpermissive media. l-Arginine, l-glutamine, dl-histidine, malate, and dl-ornithine promoted swarming on several types of media without enhancing swimming motility or growth rate. Testing of isogenic mutants revealed that swarming in response to the cues required putrescine biosynthesis and pathways involved in amino acid metabolism. Furthermore, excess glutamine was found to be a strict requirement for swarming on normal swarm agar in addition to being a swarming cue under normally nonpermissive conditions. We thus conclude that initiation of swarming occurs in response to specific cues and that manipulating concentrations of key nutrient cues can signal whether or not a particular environment is permissive for swarming.  相似文献   
52.
During a force-matched bilateral task, when pain is induced in one limb, a shift of load to the non-painful leg is classically observed. This study aimed to test the hypothesis that this adaptation to pain depends on the mechanical efficiency of the non-painful leg. We studied a bilateral plantarflexion task that allowed flexibility in the relative force produced with each leg, but constrained the sum of forces from both legs to match a target. We manipulated the mechanical efficiency of the non-painful leg by imposing scaling factors: 1, 0.75, or 0.25 to decrease mechanical efficiency (Decreased efficiency experiment: 18 participants); and 1, 1.33 or 4 to increase mechanical efficiency (Increased efficiency experiment: 17 participants). Participants performed multiple sets of three submaximal bilateral isometric plantarflexions with each scaling factor during two conditions (Baseline and Pain). Pain was induced by injection of hypertonic saline into the soleus. Force was equally distributed between legs during the Baseline contractions (laterality index was close to 1; Decreased efficiency experiment: 1.16±0.33; Increased efficiency experiment: 1.11±0.32), with no significant effect of Scaling factor. The laterality index was affected by Pain such that the painful leg contributed less than the non-painful leg to the total force (Decreased efficiency experiment: 0.90±0.41, P<0.001; Increased efficiency experiment: 0.75±0.32, P<0.001), regardless of the efficiency (scaling factor) of the non-painful leg. When compared to the force produced during Baseline of the corresponding scaling condition, a decrease in force produced by the painful leg was observed for all conditions, except for scaling 0.25. This decrease in force was correlated with a decrease in drive to the soleus muscle. These data highlight that regardless of the overall mechanical cost, the nervous system appears to prefer to alter force sharing between limbs such that force produced by the painful leg is reduced relative to the non-painful leg.  相似文献   
53.
54.
Many neurodegenerative diseases have a hallmark regional and cellular pathology. Gene expression analysis of healthy tissues may provide clues to the differences that distinguish resistant and sensitive tissues and cell types. Comparative analysis of gene expression in healthy mouse and human brain provides a framework to explore the ability of mice to model diseases of the human brain. It may also aid in understanding brain evolution and the basis for higher order cognitive abilities. Here we compare gene expression profiles of human motor cortex, caudate nucleus, and cerebellum to one another and identify genes that are more highly expressed in one region relative to another. We separately perform identical analysis on corresponding brain regions from mice. Within each species, we find that the different brain regions have distinctly different expression profiles. Contrasting between the two species shows that regionally enriched genes in one species are generally regionally enriched genes in the other species. Thus, even when considering thousands of genes, the expression ratios in two regions from one species are significantly correlated with expression ratios in the other species. Finally, genes whose expression is higher in one area of the brain relative to the other areas, in other words genes with patterned expression, tend to have greater conservation of nucleotide sequence than more widely expressed genes. Together these observations suggest that region-specific genes have been conserved in the mammalian brain at both the sequence and gene expression levels. Given the general similarity between patterns of gene expression in healthy human and mouse brains, we believe it is reasonable to expect a high degree of concordance between microarray phenotypes of human neurodegenerative diseases and their mouse models. Finally, these data on very divergent species provide context for studies in more closely related species that address questions such as the origins of cognitive differences.  相似文献   
55.
Cycle and gestation lengths, menstruation patterns, female genital swelling characteristics, and male-female consortship durations are reported in a semifree-ranging group of Tonkean macaques (Macaca tonkeana) studied over a 12 year period. In addition, profiles of urinary estrone conjugates (E1C) and immunoreactive pregnanediol glucuronide (PdG) throughout four complete menstrual cycles in two females and three full-term pregnancies are presented. Based on intermenstrual intervals, a mean cycle length of 37–41 days (n = 55 cycles in 10 females) was found. Gestation length averaged 173 days (n = 27 pregnancies in eight females). Measurement of PdG immunoreactivity in urine revealed a cyclic pattern with a 5–15-fold increase between follicular and luteal phase concentrations, suggesting that PdG is a reliable indicator of ovarian cyclicity and luteal function. In contrast to PdG, E1C excretion showed no clear pattern throughout the cycle; however, highest values of E1C were usually found shortly before the onset of the luteal phase PdG rise at the presumed time of ovulation. Levels of both hormones were elevated during the first half of gestation and showed a marked increase throughout the second half, with maximum E1C concentrations being up to 100-fold higher than nonpregnant levels. Consortships by the male and occurrence of female genital swelling were long lasting (on average 5–10 days and 13 days, respectively) and were restricted to the follicular phase of the cycle. The day of maximal swelling and day of detumescence as well as the end of male consortship were closely associated with the periovulatory period. Swellings and consortships were longer following lactational ammenorhea than for subsequent cycles. The evolutionary significance of the cyclical changes undergone by females upon their relations with males is discussed. © 1996 Wiley-Liss, Inc.  相似文献   
56.
The conformation and amide proton exchangeability of the peptide acetyl-K(2)-A(24)-K(2)-amide (A(24)) and its interaction with phosphatidylcholine bilayers were examined by a variety of physical techniques. When dissolved in or cast from methanol as a dried film, A(24) is predominantly alpha-helical. In aqueous media, however, A(24) exists primarily as a mixture of helical (though not necessarily alpha-helical) and random coiled structures, both of which allow rapid H-D exchange of all amide protons. When incorporated into phospholipids in the absence of water, A(24) also exists primarily as a transmembrane alpha-helix. However, upon hydration of that system, rapid exchange of all amide protons also occurs along with a marked change in the amide I absorption band of the peptide. Also, when dispersed with phosphatidylcholine in aqueous media, the conformation and thermal stability of A(24) are not significantly altered by the presence of the phospholipid or by its gel/liquid-crystalline phase transition. Differential scanning calorimetric and electron spin resonance spectroscopic studies indicate that A(24) has relatively minor effects on the thermodynamic properties of the lipid hydrocarbon chain-melting phase transition, that it does not abolish the lipid pretransition, and that its presence has no significant effect on the orientational order or rates of motion of the phospholipid hydrocarbon chains. We therefore conclude that A(24) has sufficient alpha-helical propensity, but insufficient hydrophobicity, to maintain a stable transmembrane association with phospholipid bilayers in the presence of water. Instead, it exists primarily as a dynamic mixture of helices and other conformers and resides mostly in the aqueous phase where it interacts weakly with the bilayer surface or with the polar/apolar interfacial region of phosphatidylcholine bilayers. Thus, polyalanine-based peptides are not good models for the transmembrane alpha-helical segments of natural membrane proteins.  相似文献   
57.
58.
The light-harvesting complex LH2 from a purple bacterium, Rubrivivax gelatinosus, has been incorporated into the Q230 cubic phase of monoolein. We measured the self-diffusion of LH2 in detergent solution and in the cubic phase by fluorescence recovery after photobleaching. We investigated also the absorption and fluorescence properties of this oligomeric membrane protein in the cubic phase, in comparison with its beta-octyl glucoside solution. In these experiments, native LH2 and LH2 labeled by a fluorescent marker were used. The results indicate that the inclusion of LH2 into the cubic phase induced modifications in the carotenoid and B800 binding sites. Despite these significant perturbations, the protein seems to keep an oligomeric structure. The relevance of these observations for the possible crystallization of this protein in the cubic phase is discussed.  相似文献   
59.
We have investigated the effect of the presence of 25 mol percent cholesterol on the interactions of the antimicrobial peptide gramicidin S (GS) with phosphatidylcholine and phosphatidylethanolamine model membrane systems using a variety of methods. Our circular dichroism spectroscopic measurements indicate that the incorporation of cholesterol into egg phosphatidylcholine vesicles has no significant effect on the conformation of the GS molecule but that this peptide resides in a range of intermediate polarity as compared to aqueous solution or an organic solvent. Our Fourier transform infrared spectroscopic measurements confirm these findings and demonstrate that in both cholesterol-containing and cholesterol-free dimyristoylphosphatidylcholine liquid-crystalline bilayers, GS is located in a region of intermediate polarity at the polar--nonpolar interfacial region of the lipid bilayer. However, GS appears to be located in a more polar environment nearer the bilayer surface when cholesterol is present. Our (31)P-nuclear magnetic resonance studies demonstrate that the presence of cholesterol markedly reduces the tendency of GS to induce the formation of inverted nonlamellar phases in model membranes composed of an unsaturated phosphatidylethanolamine. Finally, fluorescence dye leakage experiments indicate that cholesterol inhibits the GS-induced permeabilization of phosphatidylcholine vesicles. Thus in all respects the presence of cholesterol attenuates but does not abolish the interactions of GS with, and the characteristic effects of GS on, phospholipid bilayers. These findings may explain why it is more potent at disrupting cholesterol-free bacterial than cholesterol-containing eukaryotic membranes while nevertheless disrupting the integrity of the latter at higher peptide concentrations. This additional example of the lipid specificity of GS may aid in the rational design of GS analogs with increased antibacterial but reduced hemolytic activities.  相似文献   
60.
We have investigated the effects of the model alpha-helical transmembrane peptide Ac-K(2)L(24)K(2)-amide (L(24)) on the thermotropic phase behavior of aqueous dispersions of 1,2-dielaidoylphosphatidylethanolamine (DEPE) to understand better the interactions between lipid bilayers and the membrane-spanning segments of integral membrane proteins. We studied in particular the effect of L(24) and three derivatives thereof on the liquid-crystalline lamellar (L(alpha))-reversed hexagonal (H(II)) phase transition of DEPE model membranes by differential scanning calorimetry and (31)P nuclear magnetic resonance spectroscopy. We found that the incorporation of L(24) progressively decreases the temperature, enthalpy, and cooperativity of the L(alpha)-H(II) phase transition, as well as induces the formation of an inverted cubic phase, indicating that this transmembrane peptide promotes the formation of inverted nonlamellar phases, despite the fact that the hydrophobic length of this peptide exceeds the hydrophobic thickness of the host lipid bilayer. These characteristic effects are not altered by truncation of the side chains of the terminal lysine residues or by replacing each of the leucine residues at the end of the polyleucine core of L(24) with a tryptophan residue. Thus, the characteristic effects of these transmembrane peptides on DEPE thermotropic phase behavior are independent of their detailed chemical structure. Importantly, significantly shortening the polyleucine core of L(24) results in a smaller decrease in the L(alpha)-H(II) phase transition temperature of the DEPE matrix into which it is incorporated, and reducing the thickness of the host phosphatidylethanolamine bilayer results in a larger reduction in the L(alpha)-H(II) phase transition temperature. These results are not those predicted by hydrophobic mismatch considerations or reported in previous studies of other transmembrane alpha-helical peptides containing a core of an alternating sequence of leucine and alanine residues. We thus conclude that the hydrophobicity and conformational flexibility of transmembrane peptides can affect their propensity to induce the formation of inverted nonlamellar phases by mechanisms not primarily dependent on lipid-peptide hydrophobic mismatch.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号