Although protein-protein interaction (PPI) networks have been shown to offer a systems-wide view of cellular processes, only a few plant PPI maps are available. Recently, the core cell cycle of Arabidopsis thaliana has been analyzed by three independent PPI technologies, including yeast two-hybrid systems, bimolecular fluorescence complementation and tandem affinity purification. Here, we merge the three interactomes with literature-curated and computationally predicted interactions, paving the way for a comprehensive picture of the plant core cell cycle machinery. Platform-specific interactions unveil the strengths and weaknesses of each detection method and give insights into the nature of the interactions among cell cycle proteins. Moreover, comparison of the obtained data reveals that a complete interactome can only be obtained when multiple techniques are applied in parallel. 相似文献
Resistant rootstocks offer an alternative to pesticides for the control of soil pests. In Prunus spp., resistance loci to root-knot nematodes (RKN) have been mapped and a transformation method is needed to validate candidate genes. Our efforts have focused on the generation of transformed hairy-roots and composite plants appropriate for nematode infection assays. An efficient and reliable method using the A4R strain of Agrobacterium rhizogenes for the transformation of Prunus roots with an Egfp reporter gene is given. The rooting efficiency, depending on the genotypes, was maximal for the interspecific hybrid 253 (Myrobalan plum?×?almond-peach), susceptible to RKN, that was retained for subsequent studies. From the agro-inoculated cuttings, 72% produced roots, mainly at the basal section of the stem. Transformed roots were screened by microscope detection of Egfp fluorescence and molecular analyses of the integration of the transgene. The absence of residual agrobacteria in the plants was checked by the non-amplification of the chromosomal gene chvH. Egfp was expressed visually in 76% of the rooted plants. Isolated hairy roots in Petri dishes and composite plants (transformed roots and non-transformed aerial part) in soil containers were inoculated with the RKN Meloidogyne incognita. In both cases, root transformation did not affect the ability of the nematodes to develop in the root tissues. Our results showed that isolated hairy-roots can be used to validate candidate genes and the conditions in which composite plants offer a complementary system for studying the function of root genes in physiological conditions of whole plants are discussed. 相似文献
Arabidopsis genotypes with a hyperactive salicylic acid-mediated signalling pathway exhibit enhanced disease resistance, which is often coupled with growth and developmental defects, such as dwarfing and spontaneous necrotic lesions on the leaves, resulting in reduced biomass yield. In this article, we report a novel recessive mutant of Arabidopsis, cdd1 (constitutive defence without defect in growth and development1), that exhibits enhanced disease resistance associated with constitutive salicylic acid signalling, but without any observable pleiotropic phenotype. Both NPR1 (NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES1)-dependent and NPR1-independent salicylic acid-regulated defence pathways are hyperactivated in cdd1 mutant plants, conferring enhanced resistance against bacterial pathogens. However, a functional NPR1 allele is required for the cdd1-conferred heightened resistance against the oomycete pathogen Hyaloperonospora arabidopsidis. Salicylic acid accumulates at elevated levels in cdd1 and cdd1 npr1 mutant plants and is necessary for cdd1-mediated PR1 expression and disease resistance phenotypes. In addition, we provide data which indicate that the cdd1 mutation negatively regulates the npr1 mutation-induced hyperactivation of ethylene/jasmonic acid signalling. 相似文献
Go, a guanine nucleotide binding protein found predominantly in neural tissues, interacts in vitro with rhodopsin, muscarinic, and other receptors and has been implicated in the regulation of ion channels. Despite the virtual identity of reported cDNA sequences for the alpha subunit of Go (Go alpha), multiple molecular weight forms of mRNA have been identified in tissues from all species examined. To investigate the molecular basis for the size heterogeneity of Go alpha mRNAs, four cDNA clones were isolated from the same retinal lambda gt10 cDNA library that was used earlier to isolate lambda GO9, a clone encompassing the complete coding region of Go alpha. These clones were identified as Go alpha clones based on nucleotide sequence identity with lambda GO9 in the coding region; they diverge, however, from lambda GO9 in the 3'-untranslated region 28 nucleotides past the stop codon. An oligonucleotide probe complementary to a portion of the 3'-untranslated region of lambda GO9 that differs from the newly isolated clones hybridized with 3.0- and 4.0-kb mRNAs present in bovine brain and retina whereas a similar probe for the unique region of the new clones hybridized with a 4.0-kb mRNA in both tissues and with a 2.0-kb mRNA found predominantly in retina. A similar hybridization pattern was observed when brain poly(A+) RNA from other species was hybridized with the different 3'-untranslated region probes. It appears that differences in the 3'-untranslated regions could, in part, be the basis for the observed heterogeneity in Go alpha mRNAs. 相似文献
Introduction: The study of microbial communities based on the combined analysis of genomic and proteomic data – called metaproteogenomics – has gained increased research attention in recent years. This relatively young field aims to elucidate the functional and taxonomic interplay of proteins in microbiomes and its implications on human health and the environment.
Areas covered: This article reviews bioinformatics methods and software tools dedicated to the analysis of data from metaproteomics and metaproteogenomics experiments. In particular, it focuses on the creation of tailored protein sequence databases, on the optimal use of database search algorithms including methods of error rate estimation, and finally on taxonomic and functional annotation of peptide and protein identifications.
Expert opinion: Recently, various promising strategies and software tools have been proposed for handling typical data analysis issues in metaproteomics. However, severe challenges remain that are highlighted and discussed in this article; these include: (i) robust false-positive assessment of peptide and protein identifications, (ii) complex protein inference against a background of highly redundant data, (iii) taxonomic and functional post-processing of identification data, and finally, (iv) the assessment and provision of metrics and tools for quantitative analysis. 相似文献
Delayed rectifier voltage-gated K(+) (K(V)) channels are important determinants of neuronal excitability. However, the large number of K(V) subunits poses a major challenge to establish the molecular composition of the native neuronal K(+) currents. A large part (~60%) of the delayed rectifier current (I(K)) in small mouse dorsal root ganglion (DRG) neurons has been shown to be carried by both homotetrameric K(V)2.1 and heterotetrameric channels of K(V)2 subunits with silent K(V) subunits (K(V)S), while a contribution of K(V)1 channels has also been demonstrated. Because K(V)3 subunits also generate delayed rectifier currents, we investigated the contribution of K(V)3 subunits to I(K) in small mouse DRG neurons. After stromatoxin (ScTx) pretreatment to block the K(V)2-containing component, application of 1 mM TEA caused significant additional block, indicating that the ScTx-insensitive part of I(K) could include K(V)1, K(V)3, and/or M-current channels (KCNQ2/3). Combining ScTx and dendrotoxin confirmed a relevant contribution of K(V)2 and K(V)2/K(V)S, and K(V)1 subunits to I(K) in small mouse DRG neurons. After application of these toxins, a significant TEA-sensitive current (~19% of total I(K)) remained with biophysical properties that corresponded to those of K(V)3 currents obtained in expression systems. Using RT-PCR, we detected K(V)3.1-3 mRNA in DRG neurons. Furthermore, Western blot and immunocytochemistry using K(V)3.1-specific antibodies confirmed the presence of K(V)3.1 in cultured DRG neurons. These biophysical, pharmacological, and molecular results demonstrate a relevant contribution (~19%) of K(V)3-containing channels to I(K) in small mouse DRG neurons, supporting a substantial role for K(V)3 subunits in these neurons. 相似文献