首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   288篇
  免费   4篇
  国内免费   2篇
  2018年   3篇
  2017年   3篇
  2016年   2篇
  2014年   6篇
  2013年   3篇
  2012年   10篇
  2011年   17篇
  2010年   14篇
  2009年   17篇
  2008年   12篇
  2007年   22篇
  2006年   19篇
  2005年   26篇
  2004年   21篇
  2003年   7篇
  2002年   11篇
  2001年   3篇
  2000年   4篇
  1999年   3篇
  1998年   3篇
  1997年   7篇
  1996年   3篇
  1993年   2篇
  1992年   8篇
  1991年   3篇
  1990年   2篇
  1989年   6篇
  1987年   2篇
  1984年   2篇
  1983年   2篇
  1977年   2篇
  1971年   4篇
  1969年   1篇
  1968年   2篇
  1967年   1篇
  1966年   2篇
  1964年   2篇
  1961年   2篇
  1959年   2篇
  1958年   4篇
  1957年   1篇
  1956年   1篇
  1954年   2篇
  1953年   4篇
  1952年   4篇
  1951年   1篇
  1949年   4篇
  1948年   1篇
  1938年   1篇
  1934年   1篇
排序方式: 共有294条查询结果,搜索用时 62 毫秒
181.
Unsaturated fatty acid amides, 9(Z)-octadecenamide (2) and 9(Z),12(Z)-octadecadienamide (4) as inhibitors of acyl-CoA: cholesterol acyltransferase (ACAT) were isolated from the ethyl acetate extracts of the insect, Mylabris phalerate Pallas, and elucidated by their spectroscopic data analysis. Compounds 2 and 4 inhibited rat liver microsomal ACAT, hACAT-1, and hACAT-2 with IC(50) values of 170, 85, and 63 microM for 2 and of 151, 53, and 45 microM for 4, respectively.  相似文献   
182.
Biodegradation of endosulfan, a chlorinated cyclodiene insecticide, is generally accompanied by production of the more toxic and more persistent metabolite, endosulfan sulfate. Since our reported endosulfan degrader, Klebsiella pneumoniae KE-1, failed to degrade endosulfan sulfate, we tried to isolate an endosulfan sulfate degrader from endosulfan-polluted soils. Through repetitive enrichment and successive subculture using mineral salt medium containing endosulfan or endosulfan sulfate as the sole source of carbon and energy, we isolated a bacterium capable of degrading endosulfan sulfate as well as endosulfan. The bacterium KE-8 was identified as Klebsiella oxytoca from the results of 16S rDNA sequence analysis. In biodegradation assays with KE-8 using mineral salt medium containing endosulfan (150 mg l–1) or endosulfan sulfate (173 mg l–1), the biomass was rapidly increased to an optical density at 550 nm of 1.9 in 4 days and the degradation constants for - and -endosulfan, and endosulfan sulfate were 0.3084, 0.2983 and 0.2465 day–1, respectively. Analysis of the metabolites further suggested that K. oxytoca KE-8 has high potential as a biocatalyst for bioremediation of endosulfan and/or endosulfan sulfate.  相似文献   
183.
Water uptake by Agave deserti and Ferocatus acanthodes was predictedusing a two-dimensional simulation model in which the soil arounda plant was divided into a series of layers and concentric cylindricalshells. Root lengths in 0.05 m thick soil layers were determinedfor both species in the field, where mean root depths were only0.11 m for A. deserti and 0.10 m for F. acanthodes. For a yearwith average precipitation (159 mm), 42 per cent of the annualprecipitation could be taken up by A. deserti and 25 per centby F. acanthodes. Predicted water uptake by both species wasgreater from the upper soil layers (above 0.15 m) for averageand dry years, but was greater from the deeper layers for awet year. The actual root distribution for both species ledto more water uptake than when all of the roots were in a singlelayer. The large number of days per year when the soil temperaturesexceeded 57 °C (the temperature for 50 per cent inhibitionof uptake of a vital stain by root cells) may exclude rootsfrom the 0.00–0.05 m soil layer, even though water uptakewhen all roots were located there was predicted to be maximal.Therefore, the observed root distribution of A. deserti andF. acanthodes may be limited near the soil surface by high temperaturesand at maximum depths by water availability for all but wetyears. Agave deserti, Ferocactus acanthodes, desert succulents, root system, root distribution, soil temperature, water uptake  相似文献   
184.
185.
Water movement to and from a root depends on the soil hydraulicconductivity coefficient (Lsoil), the distance across any root-soilair gap, and the hydraulic conductivity coefficient of the root(LP). After analytical equations for the effective conductanceof each part of the pathway are developed, the influences ofsoil drying on the soil water potential and Lsoil are describedduring a 30 d period for a loamy sand in the field. The influencesof soil drying on LP for three desert succulents, Agave deserti,Ferocactus acanthodes, and Opuntia ficus-indica, are also describedfor a 30 d period. To quantify the effects of soil drying onthe development of a root-soil air gap, diameters of 6-week-oldroots of the three species were determined at constant watervapour potentials of –1.0 MPa and –10 MPa as wellas with the water vapour potential decreasing at the same rateas soil drying during a 30 d period. The shrinkage observedfor roots initially 2·0 mm in diameter averaged 19% duringthe 30d period. The predominant limiting factor for water movementwas LP of the root for the first 7 d of soil drying, the root-soilair gap for the next 13 d, and Lsoil thereafter. Compared withthe ease of water uptake from a wet soil, the decrease in conductancesduring soil drying, especially the decrease in Lsoil causedthe overall conductance to decrease by 3 x 103-fold during the30 d period for the three species considered, so relativelylittle water was lost to the dry soil. Such rectifier-like behaviourof water movement in the soil-root system resulted primarilyfrom changes in Lsoil and, presumably, is a general phenomenonamong plants, preventing water loss during drought but facilitatingwater uptake after rainfall. Key words: Agave deserti, Ferocactus acanthodes, Opuntia ficus-indica, rectification, soil water potential, water movement  相似文献   
186.
Hydraulic conductivity (Lp), radial conductivity (LR), axialconductance (Kh), and related anatomical characteristics forlateral roots of Agave deserti were investigated during rootgrowth and drought-induced abscission. The elongation rate oflateral roots averaged 5 mm d–1 under wet conditions andwas reduced 95% by 17 d of drought (  相似文献   
187.
The temperature and water relations of sun versus shade leavesof Hyptis emoryi Torr. were evaluated from field measurementsmade in late summer. Throughout most of the day sun leaves hadhigher temperatures and higher resistances to water vapour diffusion,but lower transpiration rates and lower stem water potentials,than did shade leaves. Leaf absorptivity to solar irradiationwas less for 1.5-cm-long sun leaves (0.44) than for 4.0-cm shadeleaves (0.56). For both leaf types the stomatal resistance increasedas the water vapour concentration drop from the leaf to theair increased. Energy balance equations were used together with the measuredtemperature dependence of photosynthesis to predict the effectof variations in leaf absorptivity, length, and resistance onnet photosynthesis. The influence of leaf dimorphism on wholeplants was determined by calculating daily photosynthesis andtranspiration for plants with various percentages of sun andshade leaves. A hypothetical plant with all sun leaves in thesun had about twice the photosynthesis and half the transpirationratio as did plants with sun leaves in the shade or shade leavesin the sun or shade. Plants with both sun and shade leaves hadthe highest predicted photosynthesis per unit ground area. Thepossible adaptive significance of the seasonal variation insun and shade leaf percentages observed for individual H. emoryibushes is discussed in terms of water economy and photosynthesi  相似文献   
188.
189.
Tyrosinase-related protein (TRP)-1 is one of the most abundant melanosomal glycoproteins involved in melanogenesis. This report summarizes our recent research efforts related to the biological role and biosynthesis of TRP-1 and its transport from TGN (trans-Golgi network) to the stage I melanosome. Our UV irradiation and tyrosinase and TRP-1 cDNA co-transfection studies indicated that human TRP-1 is involved in not only melanogenesis but also prevention of melanocyte death, which may occur during biosynthesis of melanin pigment in the presence of tyrosinase. Furthermore, a coordinated gene interaction was indicated between tyrosinase and TRP-1, resulting in upregulation of mRNA and protein expression of LAMP (lysosome-associated membrane protein)-1 that would directly prevent the tyrosinase-mediated programmed cell death of melanocytes. Similar to tyrosinase, however, TRP-1 appears to require a molecular chaperone, calnexin, which we have cloned recently. Our cDNA transfection study of tyrosinase with calnexin showed clearly the necessity of calnexin in order to have efficient, functional activity of melanosomal glycoprotein, especially tyrosinase. Once glycosylation is completed, TRP-1 will be transported from TGN to the stage I melanosome. At this stage, TRP-1 will have its own target signal, in particular, tyrosine-rich leucine residues in cytoplasmic tail. Our TRP-1 cDNA transfection and immunoelectron microscopy study shows that TRP-1 will be transported through small vesicles, probably non-clathrin-coated type, to large vacuoles, identical to the MPR (mannose-6-phosphate receptor)-positive, late endosomes. In this transport process, a low molecular weight G-protein, rab-7, was isolated from the purified melanosomal protein on 2D-PAGE and identified by subsequent sequencing and PCR amplification. Confocal microscopy with double immunostaining and immunoelectron microscopy confirmed the co-localization of rab-7 and TRP-1 in the melanosomes with early stages of maturation (I-III). Furthermore, this process will also be regulated by phosphatidylinositol 3-kinase (PI-3 kinase).  相似文献   
190.
Acid phosphatase (AP) in the egg of the lady beetle, Harmonia axyridis, was purified and characterized. Ammonium sulfate precipitation, CM column and isoelectrofocusing (IEF) were applied to purify an estimated molecular weight of 66 kDa AP. The purity was checked by SDS PAGE, native PAGE and Western blot. AP was detected in the hemolymph of the female and the egg, but not in the male on the blotting. Km of AP for a substrate, p‐nitrophenyl phosphate (p‐NPP), was 1.64 x 10‐4 M. AP had the optimum enzymatic activity at pH 3.5. In inhibition tests performed with various chemicals, ammonium molybdate suppressed 99% of the enzyme activity of AP even at the concentration of 5 x 10‐4 mM. AP was stable up to 50°C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号