首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10970篇
  免费   934篇
  国内免费   18篇
  2023年   54篇
  2022年   113篇
  2021年   220篇
  2020年   148篇
  2019年   190篇
  2018年   232篇
  2017年   216篇
  2016年   331篇
  2015年   575篇
  2014年   597篇
  2013年   706篇
  2012年   891篇
  2011年   777篇
  2010年   510篇
  2009年   485篇
  2008年   680篇
  2007年   626篇
  2006年   530篇
  2005年   500篇
  2004年   477篇
  2003年   414篇
  2002年   398篇
  2001年   194篇
  2000年   175篇
  1999年   149篇
  1998年   99篇
  1997年   81篇
  1996年   66篇
  1995年   83篇
  1994年   55篇
  1993年   59篇
  1992年   94篇
  1991年   80篇
  1990年   85篇
  1989年   86篇
  1988年   84篇
  1987年   82篇
  1986年   75篇
  1985年   80篇
  1984年   65篇
  1983年   48篇
  1982年   46篇
  1980年   35篇
  1979年   50篇
  1978年   44篇
  1977年   33篇
  1976年   43篇
  1975年   33篇
  1974年   34篇
  1973年   26篇
排序方式: 共有10000条查询结果,搜索用时 625 毫秒
901.
The Escherichia coli (E. coli) reference collection, ECOR, consists of 72 strains that are representative of the genotypic diversity, as indexed by multilocus enzyme electrophoresis (MLEE), in the species as a whole. MLEE revealed 4 main phylogenetic groups designated A, B1, B2 and D. We present a study of the relationship between the ECOR strains as determined by polymorphisms in seven variable-number of tandem repeats (VNTR) loci. Seven tandem repeats that were present in more than one of the fully sequenced E. coli strains were selected, and primers were constructed in order to amplify the targets in all species where the loci were present. The combined result for all VNTR loci was adapted as a multiple-locus variable-number tandem repeats analysis (MLVA) and showed that the ECOR collection was divided into 63 distinct genotypes. The ECOR phylogenetic groups defined by MLEE were not well conserved by MLVA. A set of 61 pathogenic isolates of both E. coli and Shigella spp. was then tested with the same set of VNTR loci, and revealed 54 distinct genotypes. In addition, the MLVA method was used to genotype isolates from patients and suspected sources in a recent outbreak of E. coli O103 in Norway. The pathogenic E. coli isolates contained the diarrhea causing categories EIEC, EAEC, STEC, ETEC and EPEC. Shigella isolates were of species S. flexneri, S. boydii, S. sonnei and S. dysenteriae. The MLVA method rapidly genotyped all isolates in the study at a Simpson's index of diversity of D=0.98.  相似文献   
902.
Kim JH  Lee KH  Yoo DH  Kang D  Cho SH  Hong YC 《Mutation research》2007,629(1):32-39
Inflammation is known to be an important underlying condition in the development of a variety of diseases. To investigate whether blood lead induces inflammatory reactions in non-occupationally exposed adults and the effects of genetic susceptibility associated with GSTM1 and TNF-alpha gene polymorphisms on this inflammatory response, we measured blood lead levels in 300 healthy university students. Total serum TNF-alpha and IL-6 levels and WBC counts were determined to evaluate the inflammatory response. Allelic loss of GSTM1 and the TNF-alpha-308 G>A polymorphism were determined by PCR and RFLP. Positive relations between blood lead and three inflammation biomarkers were shown in male subjects with blood lead > or =2.51microg/dl (median value) (TNF-alpha, p=0.015; IL-6, p=0.082; and WBC, p=0.044). However, subgroup analysis by genotype showed an effect of blood lead on the three biomarkers only in individuals with the GSTM1 null (TNF-alpha, p=0.020; IL-6, p=0.096; and WBC, p=0.017) or TNF-alpha GG (TNF-alpha, p=0.017; IL-6, p=0.088; and WBC, p=0.095) genotype, and not in individuals with GSTM1 present (all three inflammatory biomarkers, p>0.1) or the TNF-alpha GA or AA (all three biomarkers, p>0.1) genotype. These results suggest that blood lead affects the inflammatory response and that GSTM1 and TNF-alpha gene polymorphisms are genetic factors associated with lead-induced inflammatory response.  相似文献   
903.
Plant phenotypes often differ in their resistance to natural enemies, but the mechanism for this has seldom been identified. The aim of this study was to determine if the spatial patterns of phenotype use of a highly specialized insect herbivore (the galling sawfly Pontania triandrae ) in a natural willow population can be related to phenotypic variation in plant secondary chemistry. Furthermore, we tested if traits that confer resistance to one type of natural enemy, i.e. the galling sawfly, also confer resistance to others, in our case a leaf beetle Gonioctena linnaeana and the rust fungus Melampsora amygdalinae . We identified 18 phenotypes with high and 18 phenotypes with low gall density in our field population and determined gall densities, the degree of leaf damage and rust infection on each phenotype and collected leaves for chemical analyses. The concentration of phenolics was higher in phenotypes with high density of galls suggesting that this galling sawfly may use phenolics as oviposition cues. Rust infection showed the opposite pattern, with lower levels on clones with high concentration of phenolics, while leaf damage by G. linnaeana did not differ between clone types. This indicates that these important natural enemies may assert divergent selection on willow phenotypes and that this might provide a mechanism for maintaining phenotypic variation within willow populations.  相似文献   
904.
Park SH  Kim CM  Je BI  Park SH  Park SJ  Piao HL  Xuan YH  Choe MS  Satoh K  Kikuchi S  Lee KH  Cha YS  Ahn BO  Ji HS  Yun DW  Lee MC  Suh SC  Eun MY  Han CD 《Planta》2007,227(1):1-12
OSH6 (Oryza sativa Homeobox6) is an ortholog of lg3 (Liguleless3) in maize. We generated a novel allele, termed OSH6-Ds, by inserting a defective Ds element into the third exon of OSH6, which resulted in a truncated OSH6 mRNA. The truncated mRNA was expressed ectopically in leaf tissues and encoded the N-terminal region of OSH6, which includes the KNOX1 and partial KNOX2 subdomains. This recessive mutant showed outgrowth of bracts or produced leaves at the basal node of the panicle. These phenotypes distinguished it from the OSH6 transgene whose ectopic expression led to a “blade to sheath transformation” phenotype at the midrib region of leaves, similar to that seen in dominant Lg3 mutants. Expression of a similar truncated OSH6 cDNA from the 35S promoter (35S::ΔOSH6) confirmed that the ectopic expression of this product was responsible for the aberrant bract development. These data suggest that OSH6-Ds interferes with a developmental mechanism involved in bract differentiation, especially at the basal nodes of panicles. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
905.
Recent studies have shown that CD36 plays important roles as a major scavenger receptor for oxidized low-density lipoproteins and as a crucial transporter for long-chain fatty acids. CD36 deficiency might be associated with insulin resistance and abnormal dynamics of long-chain fatty acids. Endothelin-1 (ET-1), which is synthesized and secreted by vascular endothelial cells, is the most potent endogenous vasoconstrictor known and also stimulates the proliferation of vascular smooth muscle cells (VSMCs) and thus is believed to play an important role in the development of various circulatory disorders, including hypertension and atherosclerosis. The aim of the present study was to investigate the regulatory effect of ET-1 on CD36 expression in cultured VSMCs. VSMCs were treated for different times (0-24 h) with a fixed concentration (100 nM) of ET-1 or with different concentrations (0-100 nM) for a fixed time (24 h); then CD36 expression was determined using Western blots. CD36 expression was significantly decreased by ET in a time- and dose-dependent manner. This inhibitory effect was prevented by the ET(A) receptor antagonist BQ-610 (10 microM) but not the ET(B) receptor antagonist BQ-788 (10 microM). To further explore the underlying mechanisms of ET-1 action, we examined the involvement of the tyrosine kinase-mediated and MAPK-mediated pathways. The inhibitory effect of ET-1 on CD36 protein expression was blocked by inhibition of tyrosine kinase activation by use of genistein (100 microM) and by the ERK inhibitor PD-98059 (75 microM) but not by the p38 MAPK inhibitor SB-203580 (20 microM). In conclusion, we have demonstrated that ET-1, acting via the ET(A) receptor, suppresses CD36 protein expression in VSMCs by activation of the tyrosine kinase and ERK pathways.  相似文献   
906.
907.
We analyzed the in vivo tumor regression activity of high molecular mass poly-gamma-glutamate (gamma-PGA) from Bacillus subtilis sups. chungkookjang. C57BL/6 mice were orally administered 10-, 100-, or 2000-kDa gamma-PGA or beta-glucan (positive control), and antitumor immunity was examined. Our results revealed higher levels of NK cell-mediated cytotoxicity and IFN-gamma secretion in mice treated with higher molecular mass gamma-PGA (2000 kDa) vs those treated with lower molecular mass gamma-PGA (10 or 100 kDa) or beta-glucan. We then examined the effect of oral administration of 10- or 2000-kDa gamma-PGA on protection against B16 tumor challenge in C57BL/6 mice. Mice receiving high molecular mass gamma-PGA (2000 kDa) showed significantly smaller tumor sizes following challenge with the MHC class I-down-regulated tumor cell lines, B16 and TC-1 P3 (A15), but not with TC-1 cells, which have normal MHC class I expression. Lastly, we found that gamma-PGA-induced antitumor effect was decreased by in vivo depletion of NK cells using mAb PK136 or anti-asialo GM1 Ab, and that was completely blocked in NK cell-deficient B6 beige mice or IFN-gamma knockout mice. Taken together, we demonstrated that oral administration of high molecular mass gamma-PGA (2000 kDa) generated significant NK cell-mediated antitumor activity in mice bearing MHC class I-deficient tumors.  相似文献   
908.
Isopentenyl diphosphate is the precursor of various isoprenoids that are essential to all living organisms. It is produced by the mevalonate pathway in humans but by an alternate route in plants, protozoa, and many bacteria. 1-deoxy-D-xylulose-5-phosphate reductoisomerase catalyzes the second step of this non-mevalonate pathway, which involves an NADPH-dependent rearrangement and reduction of 1-deoxy-D-xylulose 5-phosphate to form 2-C-methyl-D-erythritol 4-phosphate. The use of different pathways, combined with the reported essentiality of the enzyme makes the reductoisomerase a highly promising target for drug design. Here we present several high resolution structures of the Mycobacterium tuberculosis 1-deoxy-D-xylulose-5-phosphate reductoisomerase, representing both wild type and mutant enzyme in various complexes with Mn(2+), NADPH, and the known inhibitor fosmidomycin. The asymmetric unit corresponds to the biological homodimer. Although crystal contacts stabilize an open active site in the B molecule, the A molecule displays a closed conformation, with some differences depending on the ligands bound. An inhibition study with fosmidomycin resulted in an estimated IC(50) value of 80 nm. The double mutant enzyme (D151N/E222Q) has lost its ability to bind the metal and, thereby, also its activity. Our structural information complemented with molecular dynamics simulations and free energy calculations provides the framework for the design of new inhibitors and gives new insights into the reaction mechanism. The conformation of fosmidomycin bound to the metal ion is different from that reported in a previously published structure and indicates that a rearrangement of the intermediate is not required during catalysis.  相似文献   
909.
910.
DNA repair is known as a defense mechanism against genotoxic insults. However, the most lethal type of DNA damages, double-strand DNA breaks (DSBs), can be produced by DNA repair. We have previously demonstrated that when long patch base excision repair attempts to repair a synthetic substrate containing two uracils, the repair produces DSBs (Vispe, S. and Satoh, M. S. (2000) J. Biol. Chem. 275, 27386-27392 and Vispe, S., Ho, E. L., Yung, T. M., and Satoh, M. S. (2003) J. Biol. Chem. 278, 35279-35285). In this synthetic substrate, the two uracils are located on the opposite DNA strands (separated by an intervening sequence stable at 37 degrees C) and represent a high risk site for DSB formation. It is not clear, however, whether similar high risk sites are also induced in genomic DNA by exposure to DNA damaging agents. Thus, to investigate the mechanisms of DSB formation, we have modified the DSB formation assay developed previously and demonstrated that high risk sites for DSB formation are indeed generated in genomic DNA by exposure of cells to alkylating agents. In fact, genomic DNA containing alkylated base damages, which could represent high risk sites, are converted into DSBs by enzymes present in extracts prepared from cells derived from clinically normal individuals. Furthermore, DSBs are also produced by extracts from cells derived from ataxia-telangiectasia patients who show cancer proneness due to an impaired response to DSBs. These results suggest the presence of a novel link between base damage formation and DSBs and between long patch base excision repair and human diseases that occur due to an impaired response to DSB.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号