首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11007篇
  免费   935篇
  国内免费   19篇
  11961篇
  2023年   62篇
  2022年   141篇
  2021年   220篇
  2020年   148篇
  2019年   190篇
  2018年   232篇
  2017年   216篇
  2016年   331篇
  2015年   575篇
  2014年   597篇
  2013年   706篇
  2012年   891篇
  2011年   777篇
  2010年   510篇
  2009年   485篇
  2008年   680篇
  2007年   626篇
  2006年   530篇
  2005年   500篇
  2004年   477篇
  2003年   414篇
  2002年   398篇
  2001年   194篇
  2000年   175篇
  1999年   149篇
  1998年   99篇
  1997年   81篇
  1996年   66篇
  1995年   83篇
  1994年   55篇
  1993年   59篇
  1992年   94篇
  1991年   80篇
  1990年   85篇
  1989年   86篇
  1988年   84篇
  1987年   82篇
  1986年   75篇
  1985年   80篇
  1984年   65篇
  1983年   48篇
  1982年   46篇
  1980年   35篇
  1979年   50篇
  1978年   44篇
  1977年   33篇
  1976年   43篇
  1975年   33篇
  1974年   34篇
  1973年   26篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
751.
Gibberellic acid enhances α-amylase (EC 3.2.1.1) production in isolated barley aleurone layers after a lag period of 4 to 8 h, and most of the enzyme is produced after 12 h of hormone treatment. Amino acids necessary for protein synthesis in barley aleurone layers are derived from the degradation of storage proteins in this tissue. Since bromate is an inhibitor of barley protease, in the presence of bromate the production of α-amylase in aleurone layers becomes dependent on exogenous amino acids. We have incubated aleurone layers with bromate plus 13C-labeled amino acids and [3H]leucine from 0 to 24, 0 to 12, and 12 to 24 h after the application of gibberellic acid. The chemical quantity of [3H]leucine was negligible in comparison to that of 13C-labeled amino acids. Therefore, any density shift of proteins observed must be due to the incorporation of 13C-labeled amino acids. The density shift of α-amylase and that of newly synthesized proteins (radioactivity profile) were determined by isopycnic centrifugation in CsCl density gradients. The density shift of α-amylase isolated from aleurone layers incubated with 13C-labeled amino acids from 12 to 24 h after the addition of hormone was much larger than that of α-amylase isolated from aleurone layers incubated with 13C-labeled amino acids from 0 to 12 h of hormone treatment. By comparing the density shift of α-amylase with that of newly synthesized proteins, it is apparent that essentially all the amylase molecules are de novo synthesized. We can conclude that there is little or no accumulation of an inactive α-amylase precursor in barley aleurone cells between the time of the application of gibberellic acid and the time of the rapid increase in α-amylase activity.  相似文献   
752.
A radioimmunoassay for a new anticancer drug, bruceantin, has been developed using [3H]acetylbruceantin and antibody induced by immunizing rabbits with succinylbruceantin-bovine serum albumin conjugates. [3H]Acetylbruceantin was synthesized by reacting bruceantin with [3H]acetyl anhydride. The assay is simple and reproducible. The standard curve was linear on a logit-log plot, and the lower limit of sensitivity of the assay was 1 ng/ml. Using this assay, drug levels were easily determined in tissues of experimental animals following bruceantin administration. The assay procedure does not require sample extraction for plasma, urine, and bile. Bruceantin in other tissues can be extracted quantitatively with ethanol before being measured by the radioimmunoassay.  相似文献   
753.
754.
This study investigated the effect of glutamate decarboxylase from Neurospora crassa OR74A on GABA production in Escherichia coli. GABA is one of the inhibitory neurotransmitters in the mammalian central nervous system, and can be used as a precursor of promising biopolymer Nylon 4. E. coli that overexpressed N. crassa glutamate decarboxylase was cultured at various pH levels and temperatures to determine optimum conditions for GABA production. When the recombinant E. coli strain was cultured at 30°C and pH 3, a final GABA concentration of 5.26 g/L was obtained from 10 g/L of monosodium glutamate (MSG), corresponding to a GABA yield of 86.23%.  相似文献   
755.

Background

While the effects of light as a zeitgeber are well known, the way the effects are modulated by features of the sleep-wake system still remains to be studied in detail.

Methods

A mathematical model for disturbance and recovery of the human circadian system is presented. The model combines a circadian oscillator and a sleep-wake switch that includes the effects of orexin. By means of simulations, we characterize the period-locking zone of the model, where a stable 24-hour circadian rhythm exists, and the occurrence of circadian disruption due to both insufficient light and imbalance in orexin. We also investigate how daily bright light treatments of short duration can recover the normal circadian rhythm.

Results

It is found that the system exhibits continuous phase advance/delay at lower/higher orexin levels. Bright light treatment simulations disclose two optimal time windows, corresponding to morning and evening light treatments. Among the two, the morning light treatment is found effective in a wider range of parameter values, with shorter recovery time.

Conclusions

This approach offers a systematic way to determine the conditions under which circadian disruption occurs, and to evaluate the effects of light treatment. In particular, it could potentially offer a way to optimize light treatments for patients with circadian disruption, e.g., sleep and mood disorders, in clinical settings.
  相似文献   
756.
Plasmonic nanoparticles with outstanding photothermal conversion efficiency are promising for solar vaporization. However, the high cost and the required intense light excitation of noble metals, hinder their practical application. Herein, an inexpensive 3D plasmonic solar absorber gel that embraces all the desirable optical, thermal, and wetting properties for efficient solar vaporization is reported. The broadband absorption and strong near‐field intertip enhancement of the sparsely dispersed gold nanoflowers contribute to efficient light‐to‐heat conversion, while the macro‐nano thermal insulative silica gel retains and channels the plasmonic heat directly to the water pathways contained within the porous gel. The plasmonic‐based solar absorber gel shows a vaporization efficiency of 85% under solar irradiation of 1 sun intensity (1 kW m?2). Moreover, the porous gel framework exhibits high mechanical stability and antifouling properties, potentially useful for polluted/turbid water evaporation. Complementary water condensation‐induced triboelectricity can be harvested alongside fresh water condensate, granting simultaneous fresh water production and electricity generation functionalities. The facile sol‐gel synthesis at room temperature makes the solar absorber gel highly adaptable for practical large‐scale photothermal applications.  相似文献   
757.
The van gogh (vgo) mutant in zebrafish is characterized by defects in the ear, pharyngeal arches and associated structures such as the thymus. We show that vgo is caused by a mutation in tbx1, a member of the large family of T-box genes. tbx1 has been recently suggested to be a major contributor to the cardiovascular defects in DiGeorge deletion syndrome (DGS) in humans, a syndrome in which several neural crest derivatives are affected in the pharyngeal arches. Using cell transplantation studies, we demonstrate that vgo/tbx1 acts cell autonomously in the pharyngeal mesendoderm and influences the development of neural crest-derived cartilages secondarily. Furthermore, we provide evidence for regulatory interactions between vgo/tbx1 and edn1 and hand2, genes that are implicated in the control of pharyngeal arch development and in the etiology of DGS.  相似文献   
758.
Many insects possess symbiotic bacteria that affect the biology of the host. The level of the symbiont population in the host is a pivotal factor that modulates the biological outcome of the symbiotic association. Hence, the symbiont population should be maintained at a proper level by the host''s control mechanisms. Several mechanisms for controlling intracellular symbionts of insects have been reported, while mechanisms for controlling extracellular gut symbionts of insects are poorly understood. The bean bug Riptortus pedestris harbors a betaproteobacterial extracellular symbiont of the genus Burkholderia in the midgut symbiotic organ designated the M4 region. We found that the M4B region, which is directly connected to the M4 region, also harbors Burkholderia symbiont cells, but the symbionts therein are mostly dead. A series of experiments demonstrated that the M4B region exhibits antimicrobial activity, and the antimicrobial activity is specifically potent against the Burkholderia symbiont but not the cultured Burkholderia and other bacteria. The antimicrobial activity of the M4B region was detected in symbiotic host insects, reaching its highest point at the fifth instar, but not in aposymbiotic host insects, which suggests the possibility of symbiont-mediated induction of the antimicrobial activity. This antimicrobial activity was not associated with upregulation of antimicrobial peptides of the host. Based on these results, we propose that the M4B region is a specialized gut region of R. pedestris that plays a critical role in controlling the population of the Burkholderia gut symbiont. The molecular basis of the antimicrobial activity is of great interest and deserves future study.  相似文献   
759.
Celecoxib, a cyclooxygenase-2 (COX-2) inhibitor, can elicit anti-tumor effects in various malignancies. Here, we sought to clarify the role of autophagy in celecoxib-induced cytotoxicity in human urothelial carcinoma (UC) cells. The results shows celecoxib induced cellular stress response such as endoplasmic reticulum (ER) stress, phosopho-SAPK/JNK, and phosopho-c-Jun as well as autophagosome formation in UC cells. Inhibition of autophagy by 3-methyladenine (3-MA), bafilomycin A1 or ATG7 knockdown potentiated celecoxib-induced apoptosis. Up-regulation of autophagy by rapamycin or GFP-LC3B-transfection alleviated celecoxib-induced cytotoxicity in UC cells. Taken together, the inhibition of autophagy enhances therapeutic efficacy of celecoxib in UC cells, suggesting a novel therapeutic strategy against UC.  相似文献   
760.
Microglossia is a congenital birth defect in humans and adversely impacts quality of life. In vertebrates, tongue muscle derives from the cranial mesoderm, whereas tendons and connective tissues in the craniofacial region originate from cranial neural crest (CNC) cells. Loss of transforming growth factor β (TGFβ) type II receptor in CNC cells in mice (Tgfbr2fl/fl;Wnt1-Cre) causes microglossia due to a failure of cell-cell communication between cranial mesoderm and CNC cells during tongue development. However, it is still unclear how TGFβ signaling in CNC cells regulates the fate of mesoderm-derived myoblasts during tongue development. Here we show that activation of the cytoplasmic and nuclear tyrosine kinase 1 (ABL1) cascade in Tgfbr2fl/fl;Wnt1-Cre mice results in a failure of CNC-derived cell differentiation followed by a disruption of TGFβ-mediated induction of growth factors and reduction of myogenic cell proliferation and differentiation activities. Among the affected growth factors, the addition of fibroblast growth factor 4 (FGF4) and neutralizing antibody for follistatin (FST; an antagonist of bone morphogenetic protein (BMP)) could most efficiently restore cell proliferation, differentiation, and organization of muscle cells in the tongue of Tgfbr2fl/fl;Wnt1-Cre mice. Thus, our data indicate that CNC-derived fibroblasts regulate the fate of mesoderm-derived myoblasts through TGFβ-mediated regulation of FGF and BMP signaling during tongue development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号