首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   188篇
  免费   27篇
  2021年   1篇
  2018年   2篇
  2017年   3篇
  2016年   3篇
  2015年   6篇
  2014年   3篇
  2013年   6篇
  2012年   11篇
  2011年   6篇
  2010年   11篇
  2009年   8篇
  2008年   10篇
  2007年   8篇
  2006年   9篇
  2005年   5篇
  2004年   6篇
  2003年   4篇
  2002年   3篇
  2001年   5篇
  2000年   3篇
  1999年   7篇
  1998年   5篇
  1997年   8篇
  1996年   6篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1991年   4篇
  1990年   6篇
  1989年   10篇
  1988年   7篇
  1987年   2篇
  1986年   4篇
  1985年   4篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   9篇
  1978年   1篇
  1977年   4篇
  1975年   1篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1970年   3篇
  1969年   1篇
  1921年   1篇
排序方式: 共有215条查询结果,搜索用时 62 毫秒
101.
CEACAM1 is a cell-cell adhesion molecule that mediates homophilic cell adhesion. In addition, CEACAM1 was also shown to suppress the growth of prostate, breast, and colon tumors. Structural and functional analyses showed that the adhesion activity of CEACAM1 is mediated by its extracellular domain while its cytoplasmic domain is necessary and sufficient for growth-inhibitory activity. The signal pathways leading to CEACAM1-mediated growth suppression are not known. We studied the importance of phosphorylation of serine 503 in this growth-inhibitory signaling pathway. Full-length CEACAM1 was found to be phosphorylated in vivo in both tyrosine and serine residues. Mutation of tyrosine 488 to phenylalanine did not abolish the tumor-suppressive activity of CEACAM1, suggesting that phosphorylation at tyrosine 488 is not critical for CEACAM1's tumor-suppressive activity. Although expression of CEACAM1's cytoplasmic domain inhibited the growth of DU145 prostate cancer cells in vivo, mutation of serine 503 to alanine abolished the growth-inhibitory activity. In addition, the change of serine 503 to aspartic acid produced tumor-suppressive activity similar to that of the wild-type CEACAM1. These results suggested that phosphorylation at serine 503 is essential for CEACAM1's growth-inhibitory function in vivo.  相似文献   
102.
Leishmania parasites (order Kinetoplastida, family Trypanosomatidae) cause a spectrum of human diseases ranging from asymptomatic to lethal. The ~33.6 Mb genome is distributed among 36 chromosome pairs that range in size from ~0.3 to 2.8 Mb. The complete nucleotide sequence of Leishmania major Friedlin chromosome 1 revealed 79 protein-coding genes organized into two divergent polycistronic gene clusters with the mRNAs transcribed towards the telomeres. We report here the complete nucleotide sequence of chromosome 3 (384 518 bp) and an analysis revealing 95 putative protein-coding ORFs. The ORFs are primarily organized into two large convergent polycistronic gene clusters (i.e. transcribed from the telomeres). In addition, a single gene at the left end is transcribed divergently towards the telomere, and a tRNA gene separates the two convergent gene clusters. Numerous genes have been identified, including those for metabolic enzymes, kinases, transporters, ribosomal proteins, spliceosome components, helicases, an RNA-binding protein and a DNA primase subunit.  相似文献   
103.
Harvey SH  Krien MJ  O'Connell MJ 《Genome biology》2002,3(2):reviews3003.1-reviews30035
The structural maintenance of chromosomes (SMC) proteins are essential for successful chromosome transmission during replication and segregation of the genome in all organisms. SMCs are generally present as single proteins in bacteria, and as at least six distinct proteins in eukaryotes. The proteins range in size from approximately 110 to 170 kDa, and each has five distinct domains: amino- and carboxy-terminal globular domains, which contain sequences characteristic of ATPases, two coiled-coil regions separating the terminal domains and a central flexible hinge. SMC proteins function together with other proteins in a range of chromosomal transactions, including chromosome condensation, sister-chromatid cohesion, recombination, DNA repair and epigenetic silencing of gene expression. Recent studies are beginning to decipher molecular details of how these processes are carried out.  相似文献   
104.
When bound to Escherichia coli ribosomes and irradiated with near-UV light, various derivatives of yeast tRNA(Phe) containing 2-azidoadenosine at the 3' terminus form cross-links to 23 S rRNA and 50 S subunit proteins in a site-dependent manner. A and P site-bound tRNAs, whose 3' termini reside in the peptidyl transferase center, label primarily nucleotides U2506 and U2585 and protein L27. In contrast, E site-bound tRNA labels nucleotide C2422 and protein L33. The cross-linking patterns confirm the topographical separation of the peptidyl transferase center from the E site domain. The relative amounts of label incorporated into the universally conserved residues U2506 and U2585 depend on the occupancy of the A and P sites by different tRNA ligands and indicates that these nucleotides play a pivotal role in peptide transfer. In particular, the 3'-adenosine of the peptidyl-tRNA analogue, AcPhe-tRNA(Phe), remains in close contact with U2506 regardless of whether its anticodon is located in the A site or P site. Our findings, therefore, modify and extend the hybrid state model of tRNA-ribosome interaction. We show that the 3'-end of the deacylated tRNA that is formed after transpeptidation does not immediately progress to the E site but remains temporarily in the peptidyl transferase center. In addition, we demonstrate that the E site, defined by the labeling of nucleotide C2422 and protein L33, represents an intermediate state of binding that precedes the entry of deacylated tRNA into the F (final) site from which it dissociates into the cytoplasm.  相似文献   
105.
Hormonally regulated programmed cell death in barley aleurone cells   总被引:13,自引:0,他引:13  
PC Bethke  JE Lonsdale  A Fath    RL Jones 《The Plant cell》1999,11(6):1033-1046
Cell death was studied in barley (cv Himalaya) aleurone cells treated with abscisic acid and gibberellin. Aleurone protoplasts incubated in abscisic acid remained viable in culture for at least 3 weeks, but exposure to gibberellin initiated a series of events that resulted in death. Between 4 and 8 days after incubation in gibberellin, >70% of all protoplasts died. Death, which occurred after cells became highly vacuolated, was manifest by an abrupt loss of plasma membrane integrity followed by rapid shrinkage of the cell corpse. Hydrolysis of DNA began before death and occurred as protoplasts ceased production of alpha-amylase. DNA degradation did not result in the accumulation of discrete low molecular weight fragments. DNA degradation and cell death were prevented by LY83583, an inhibitor of gibberellin signaling in barley aleurone. We conclude that cell death in aleurone cells is hormonally regulated and is the final step of a developmental program that promotes successful seedling establishment.  相似文献   
106.
107.

Background

Given the unique role of the corticotrophin-releasing hormone (CRH) system in human fetal development, the aim of our study was to estimate the association of birth weight with DNA sequence variation in three maternal genes involved in regulating CRH production, bioavailability and action: CRH, CRH-Binding Protein (CRH-BP), and CRH type 1 receptor (CRH-R1), respectively, in three racial groups (African-Americans, Hispanics, and non-Hispanic Whites).

Methods

Our study was carried out on a population-based sample of 575 mother–child dyads. We resequenced the three genes in mouse–human hybrid somatic cell lines and selected SNPs for genotyping.

Results

A significant association was observed in each race between birth weight and maternal CRH-BP SNP genotypes. Estimates of linkage disequilibrium and haplotypes established three common haplotypes marked by the rs1053989 SNP in all three races. This SNP predicted significant birth weight variation after adjustment for gestational age, maternal BMI, parity, and smoking. African American and Hispanic mothers carrying the A allele had infants whose birth weight was on average 254 and 302 grams, respectively, less than infants having C/C mothers. Non-Hispanic White mothers homozygous for the A allele had infants who were on average 148 grams less than those infants having A/C and C/C mothers.

Conclusions

The magnitudes of the estimates of the birth weight effects are comparable to the combined effects of multiple SNPs reported in a recent meta-analysis of 6 GWAS studies and is quantitatively larger than that associated with maternal cigarette smoking. This effect was persistent across subpopulations that vary with respect to ancestry and environment.  相似文献   
108.
Hydrolysis of cytochromes c and phycobiliproteins in 6 n HCl containing 0.21 m dimethylsulfoxide at 110°C for 22 h results in the quantitative conversion of cysteinyl, cystinyl, and thioether-linked cysteinyl residues to cysteic acid. Methionine is converted to homocysteic acid in a 10% yield. The number of thioether-linked cysteinyl residues can be calculated, if the number of cysteinyl and cystinyl residues is determined separately as S-carboxymethylcysteine in a 6 n HCl hydrolyzate of reduced, carboxymethylated protein. Data are presented on the number of thioether-linked cysteinyl residues present in R-, B-, and C-phycoerythrins, C- and R-phycocyanins, allophycocyanins, and the subunits of these proteins.  相似文献   
109.
Many GWAS have identified novel loci associated with common diseases, but have focused only on main effects of individual genetic variants rather than interactions with environmental factors (GxE). Identification of GxE interactions is particularly important for coronary heart disease (CHD), a major preventable source of morbidity and mortality with strong non-genetic risk factors. Atherosclerosis is the major cause of CHD, and coronary artery calcification (CAC) is directly correlated with quantity of coronary atherosclerotic plaque. In the current study, we tested for genetic variants influencing extent of CAC via interaction with smoking (GxS), by conducting a GxS discovery GWAS in Genetic Epidemiology Network of Arteriopathy (GENOA) sibships (N = 915 European Americans) followed by replication in Framingham Heart Study (FHS) sibships (N = 1025 European Americans). Generalized estimating equations accounted for the correlation within sibships in strata-specific groups of smokers and nonsmokers, as well as GxS interaction. Primary analysis found SNPs that showed suggestive associations (p≤10−5) in GENOA GWAS, but these index SNPs did not replicate in FHS. However, secondary analysis was able to replicate candidate gene regions in FHS using other SNPs (+/−250 kb of GENOA index SNP). In smoker and nonsmoker groups, replicated genes included TCF7L2 (p = 6.0×10−5) and WWOX (p = 4.5×10−6); and TNFRSF8 (p = 7.8×10−5), respectively. For GxS interactions, replicated genes included TBC1D4 (p = 6.9×10−5) and ADAMTS9 (P = 7.1×10−5). Interestingly, these genes are involved in inflammatory pathways mediated by the NF-κB axis. Since smoking is known to induce chronic and systemic inflammation, association of these genes likely reflects roles in CAC development via inflammatory pathways. Furthermore, the NF-κB axis regulates bone remodeling, a key physiological process in CAC development. In conclusion, GxS GWAS has yielded evidence for novel loci that are associated with CAC via interaction with smoking, providing promising new targets for future population-based and functional studies of CAC development.  相似文献   
110.
Levels of omega-6 (n-6) and omega-3 (n-3), long chain polyunsaturated fatty acids (LcPUFAs) such as arachidonic acid (AA; 20∶4, n-6), eicosapentaenoic acid (EPA; 20∶5, n-3) and docosahexaenoic acid (DHA; 22∶6, n-3) impact a wide range of biological activities, including immune signaling, inflammation, and brain development and function. Two desaturase steps (Δ6, encoded by FADS2 and Δ5, encoded by FADS1) are rate limiting in the conversion of dietary essential 18 carbon PUFAs (18C-PUFAs) such as LA (18∶2, n-6) to AA and α-linolenic acid (ALA, 18∶3, n-3) to EPA and DHA. GWAS and candidate gene studies have consistently identified genetic variants within FADS1 and FADS2 as determinants of desaturase efficiencies and levels of LcPUFAs in circulating, cellular and breast milk lipids. Importantly, these same variants are documented determinants of important cardiovascular disease risk factors (total, LDL, and HDL cholesterol, triglycerides, CRP and proinflammatory eicosanoids). FADS1 and FADS2 lie head-to-head (5′ to 5′) in a cluster configuration on chromosome 11 (11q12.2). There is considerable linkage disequilibrium (LD) in this region, where multiple SNPs display association with LcPUFA levels. For instance, rs174537, located ∼15 kb downstream of FADS1, is associated with both FADS1 desaturase activity and with circulating AA levels (p-value for AA levels = 5.95×10−46) in humans. To determine if DNA methylation variation impacts FADS activities, we performed genome-wide allele-specific methylation (ASM) with rs174537 in 144 human liver samples. This approach identified highly significant ASM with CpG sites between FADS1 and FADS2 in a putative enhancer signature region, leading to the hypothesis that the phenotypic associations of rs174537 are likely due to methylation differences. In support of this hypothesis, methylation levels of the most significant probe were strongly associated with FADS1 and, to a lesser degree, FADS2 activities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号