首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1833篇
  免费   184篇
  国内免费   4篇
  2023年   8篇
  2022年   27篇
  2021年   42篇
  2020年   16篇
  2019年   19篇
  2018年   29篇
  2017年   23篇
  2016年   43篇
  2015年   81篇
  2014年   79篇
  2013年   97篇
  2012年   136篇
  2011年   121篇
  2010年   81篇
  2009年   62篇
  2008年   87篇
  2007年   81篇
  2006年   85篇
  2005年   85篇
  2004年   61篇
  2003年   62篇
  2002年   66篇
  2001年   52篇
  2000年   56篇
  1999年   43篇
  1998年   23篇
  1997年   9篇
  1996年   10篇
  1995年   17篇
  1992年   37篇
  1991年   22篇
  1990年   25篇
  1989年   31篇
  1988年   24篇
  1987年   18篇
  1986年   33篇
  1985年   28篇
  1984年   11篇
  1983年   16篇
  1981年   13篇
  1980年   11篇
  1979年   14篇
  1978年   11篇
  1977年   13篇
  1976年   14篇
  1975年   12篇
  1974年   15篇
  1973年   15篇
  1972年   9篇
  1968年   8篇
排序方式: 共有2021条查询结果,搜索用时 15 毫秒
181.
O'Brien HE  Gong Y  Fung P  Wang PW  Guttman DS 《PloS one》2011,6(11):e27199
Next-generation genomic technology has both greatly accelerated the pace of genome research as well as increased our reliance on draft genome sequences. While groups such as the Genomics Standards Consortium have made strong efforts to promote genome standards there is a still a general lack of uniformity among published draft genomes, leading to challenges for downstream comparative analyses. This lack of uniformity is a particular problem when using standard draft genomes that frequently have large numbers of low-quality sequencing tracts. Here we present a proposal for an "enhanced-quality draft" genome that identifies at least 95% of the coding sequences, thereby effectively providing a full accounting of the genic component of the genome. Enhanced-quality draft genomes are easily attainable through a combination of small- and large-insert next-generation, paired-end sequencing. We illustrate the generation of an enhanced-quality draft genome by re-sequencing the plant pathogenic bacterium Pseudomonas syringae pv. phaseolicola 1448A (Pph 1448A), which has a published, closed genome sequence of 5.93 Mbp. We use a combination of Illumina paired-end and mate-pair sequencing, and surprisingly find that de novo assemblies with 100x paired-end coverage and mate-pair sequencing with as low as low as 2-5x coverage are substantially better than assemblies based on higher coverage. The rapid and low-cost generation of large numbers of enhanced-quality draft genome sequences will be of particular value for microbial diagnostics and biosecurity, which rely on precise discrimination of potentially dangerous clones from closely related benign strains.  相似文献   
182.
Rarefaction of the renal microvasculature correlates with declining kidney function. However, current technologies commonly used for its evaluation are limited by their reliance on endothelial cell antigen expression and assessment in two dimensions. We set out to establish a widely applicable and unbiased optical sectioning method to enable three dimensional imaging and reconstruction of the renal microvessels based on their luminal filling. The kidneys of subtotally nephrectomized (SNx) rats and their sham-operated counterparts were subjected to either routine two-dimensional immunohistochemistry or the novel technique of fluorescent microangiography (FMA). The latter was achieved by perfusion of the kidney with an agarose suspension of fluorescent polystyrene microspheres followed by optical sectioning of 200 μm thick cross-sections using a confocal microscope. The fluorescent microangiography method enabled the three-dimensional reconstruction of virtual microvascular casts and confirmed a reduction in both glomerular and peritubular capillary density in the kidneys of SNx rats, despite an overall increase in glomerular volume. FMA is an uncomplicated technique for evaluating the renal microvasculature that circumvents many of the limitations imposed by conventional analysis of two-dimensional tissue sections.  相似文献   
183.
Jiang B  Yap MK  Leung KH  Ng PW  Fung WY  Lam WW  Gu YS  Yip SP 《PloS one》2011,6(5):e19587

Background

The paired box 6 (PAX6) gene is considered as a master gene for eye development. Linkage of myopia to the PAX6 region on chromosome 11p13 was shown in several studies, but the results for association between myopia and PAX6 were inconsistent so far.

Methodology/Principal Findings

We genotyped 16 single nucleotide polymorphisms (SNPs) in the PAX6 gene and its regulatory regions in an initial study for 300 high myopia cases and 300 controls (Group 1), and successfully replicated the positive results with another independent group of 299 high myopia cases and 299 controls (Group 2). Five SNPs were genotyped in the replication study. The spherical equivalent of subjects with high myopia was ≤−8.0 dioptres. The PLINK package was used for genetic data analysis. No association was found between each of the SNPs and high myopia. However, exhaustive sliding-window haplotype analysis highlighted an important role for rs12421026 because haplotypes containing this SNP were found to be associated with high myopia. The most significant results were given by the 4-SNP haplotype window consisting of rs2071754, rs3026393, rs1506 and rs12421026 (P = 3.54×10−10, 4.06×10−11 and 1.56×10−18 for Group 1, Group 2 and Combined Group, respectively) and the 3-SNP haplotype window composed of rs3026393, rs1506 and rs12421026 (P = 5.48×10−10, 7.93×10−12 and 6.28×10−23 for the three respective groups). The results remained significant after correction for multiple comparisons by permutations. The associated haplotyes found in a previous study were also successfully replicated in this study.

Conclusions/Significance

PAX6 haplotypes are associated with susceptibility to the development of high myopia in Chinese. The PAX6 locus plays a role in high myopia.  相似文献   
184.
185.
186.
Oxidative stress due to excessive reactive oxygen species (ROS) and depleted antioxidants such as glutathione (GSH) can give rise to apoptotic cell death in acutely diabetic hearts and lead to heart disease. At present, the source of these cardiac ROS or the subcellular site of cardiac GSH loss [i.e., cytosolic (cGSH) or mitochondrial (mGSH) GSH] has not been completely elucidated. With the use of rotenone (an inhibitor of the electron transport chain) to decrease the excessive ROS in acute streptozotocin (STZ)-induced diabetic rat heart, the mitochondrial origin of ROS was established. Furthermore, mitochondrial damage, as evidenced by loss of membrane potential, increases in oxidative stress, and reduction in mGSH was associated with increased apoptosis via increases in caspase-9 and -3 activities in acutely diabetic hearts. To validate the role of mGSH in regulating cardiac apoptosis, L-buthionine-sulfoximine (BSO; 10 mmol/kg ip), which blocks GSH synthesis, or diethyl maleate (DEM; 4 mmol/kg ip), which inactivates preformed GSH, was administered in diabetic rats for 4 days after STZ administration. Although both BSO and DEM lowered cGSH, they were ineffective in reducing mGSH or augmenting cardiomyocyte apoptosis. To circumvent the lack of mGSH depletion, BSO and DEM were coadministered in diabetic rats. In this setting, mGSH was undetectable and cardiac apoptosis was further aggravated compared with the untreated diabetic group. In a separate group, GSH supplementation induced a robust amplification of mGSH in diabetic rat hearts and prevented apoptosis. Our data suggest for the first time that mGSH is crucial for modulating the cell suicide program in short-term diabetic rat hearts.  相似文献   
187.
Clenbuterol (Clen), a beta(2)-agonist, is known to produce skeletal and myocardial hypertrophy. This compound has recently been used in combination with left ventricular assist devices for the treatment of end-stage heart failure to reverse or prevent the adverse effects of unloading-induced myocardial atrophy. However, the mechanisms of action of Clen on myocardial cells have not been fully elucidated. In an attempt to clarify this issue, we examined the effects of chronic administration of Clen on Ca(2+) handling and substrate preference in cardiac muscle. Rats were treated with either 2 mg x kg(-1) x day(-1) Clen or saline (Sal) for 4 wk with the use of osmotic minipumps. Ventricular myocytes were enzymatically dissociated. Cells were field stimulated at 0.5, 1, and 2 Hz, and cytoplasmic Ca(2+) transients were monitored with the use of the fluorescent indicator indo-1 acetoxymethyl ester. Two-dimensional surface area and action potentials in current clamp were also measured. We found that in the Clen group there was significant hypertrophy at the organ and cellular levels compared with Sal. In Clen myocytes, the amplitude of the indo-1 ratio transients was significantly increased. Sarcoplasmic reticulum Ca(2+) content, estimated by rapid application of 20 mM caffeine, was significantly increased in the Clen group. The action potential was prolonged in the Clen group compared with Sal. Carbohydrate contribution to the tricarboxylic cycle (Krebs cycle) flux was increased several times in the Clen group. This increase was associated with decreased expression of peroxisome proliferator-activated receptor-alpha. This study shows that chronic administration of Clen induces cellular hypertrophy and increases oxidative carbohydrate utilization together with an increase in sarcoplasmic reticulum Ca(2+) content, which results in increased amplitude of the Ca(2+) transients. These effects could be important when Clen is used in conjunction with left ventricular assist devices treatment.  相似文献   
188.
A bacterium was isolated from the blood culture of an intravenous drug abuser with pseudobacteremia. The cells were strictly anaerobic, straight or slightly curved, sporulating, Gram-negative rods. It grew on sheep blood agar as non-hemolytic, pinpoint colonies after 48 hr of incubation at 37 C in an anaerobic environment. It was motile but did not produce catalase or cytochrome oxidase. 16S ribosomal DNA (rDNA) sequencing revealed three different copies of 16S rDNA sequences. More than 90% of the differences among them were due to differences in the lengths of the sequences. Phylogenetically, the bacterium is clustered with Dendrosporobacter, Sporomusa, and Propionispora, the other three genera of anaerobic, sporulating, Gram-negative rods. There were 8.6-11.1% differences between the 16S rDNA sequences of the bacterium and that of D. quercicolus, 4.7-15.1% differences between the 16S rDNA sequences of it and those of S. acidovorans, S. aerivorans, S. malonica, S. ovata, S. paucivorans, S. silvacetica, S. spaeroides, and S. termitida, and 7.6-13.1% differences between the 16S rDNA sequences of it and those of P. hippei and P. vibrioides. The G+C content of the bacterium (mean +/- SD) was 46.8 +/- 3.2%. For these reasons, a new genus and species, Anaerospora hongkongensis gen. nov. sp. nov., is proposed, for which HKU15T is the type strain.  相似文献   
189.
DNA microarray experiments have generated large amount of gene expression measurements across different conditions. One crucial step in the analysis of these data is to detect differentially expressed genes. Some parametric methods, including the two-sample t-test (T-test) and variations of it, have been used. Alternatively, a class of non-parametric algorithms, such as the Wilcoxon rank sum test (WRST), significance analysis of microarrays (SAM) of Tusher et al. (2001), the empirical Bayesian (EB) method of Efron et al. (2001), etc., have been proposed. Most available popular methods are based on t-statistic. Due to the quality of the statistic that they used to describe the difference between groups of data, there are situations when these methods are inefficient, especially when the data follows multi-modal distributions. For example, some genes may display different expression patterns in the same cell type, say, tumor or normal, to form some subtypes. Most available methods are likely to miss these genes. We developed a new non-parametric method for selecting differentially expressed genes by relative entropy, called SDEGRE, to detect differentially expressed genes by combining relative entropy and kernel density estimation, which can detect all types of differences between two groups of samples. The significance of whether a gene is differentially expressed or not can be estimated by resampling-based permutations. We illustrate our method on two data sets from Golub et al. (1999) and Alon et al. (1999). Comparing the results with those of the T-test, the WRST and the SAM, we identified novel differentially expressed genes which are of biological significance through previous biological studies while they were not detected by the other three methods. The results also show that the genes selected by SDEGRE have a better capability to distinguish the two cell types.  相似文献   
190.
Wong HY  Chu TS  Chan YW  Fok TF  Fung LW  Fung KP  Ho YY 《Life sciences》2005,76(16):1859-1872
Glucose is the principal fuel for brain metabolism and its movement across the blood-brain barrier depends on Glut1. Impaired glucose transport to the brain may have deleterious consequences. For example, Glut1 deficiency syndrome (Glut1DS) is the result of heterozygous loss of function Glut1 mutation leading to energy failure of the brain and subsequently, epileptic encephalopathy. To preserve the integrity of the energy supply to the brain in patients with compromised glucose transport function, consumption of compounds with glucose transport inhibiting properties should be avoided. Phenytoin is a widely used anticonvulsant that affects carbohydrate metabolism. In this study, the hypothesis that phenytoin and its metabolite 5-(4-hydroxyphenyl)-5-phenylhydantoin (HPPH) affect cellular glucose transport was tested. With a focus on Glut1, the effects of phenytoin and HPPH on cellular glucose transport were studied. Glucose uptake assay measuring the zero-trans influx of radioactive-labeled glucose analogues showed that phenytoin and HPPH did not exert immediate effects on erythrocyte Glut1 activity or glucose transport in Hs68 control fibroblasts, Glut1DS primary fibroblasts isolated from two patients, or in rat primary astrocytes. Prolonged exposure to the two compounds could stimulate glucose transport by up to 30-60% over the control level (p <0.05) in Hs68 and Glut1DS fibroblasts as well as in rat astrocytes. The stimulation of glucose transport by HPPH was dose-dependent and accompanied by an up-regulation of GLUT1 mRNA expression (p <0.05). In conclusion, phenytoin and HPPH do not compromise cellular glucose transport. Prolonged exposure to these compounds can modify carbohydrate homeostasis by up-regulating glucose transport in both normal and Glut1DS conditions in vitro.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号