首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5500篇
  免费   289篇
  国内免费   3篇
  2022年   29篇
  2021年   50篇
  2020年   29篇
  2019年   42篇
  2018年   65篇
  2017年   42篇
  2016年   69篇
  2015年   144篇
  2014年   180篇
  2013年   378篇
  2012年   318篇
  2011年   312篇
  2010年   198篇
  2009年   168篇
  2008年   298篇
  2007年   320篇
  2006年   297篇
  2005年   323篇
  2004年   289篇
  2003年   327篇
  2002年   341篇
  2001年   118篇
  2000年   107篇
  1999年   100篇
  1998年   93篇
  1997年   73篇
  1996年   60篇
  1995年   49篇
  1994年   39篇
  1993年   49篇
  1992年   75篇
  1991年   74篇
  1990年   57篇
  1989年   55篇
  1988年   47篇
  1987年   54篇
  1986年   37篇
  1985年   59篇
  1984年   45篇
  1983年   28篇
  1982年   37篇
  1981年   36篇
  1980年   24篇
  1979年   28篇
  1978年   30篇
  1977年   19篇
  1975年   19篇
  1974年   20篇
  1970年   17篇
  1969年   17篇
排序方式: 共有5792条查询结果,搜索用时 187 毫秒
991.
Visceral fat adiposity plays an important role in the development of metabolic syndrome. We reported previously the impact of human visceral fat adiposity on gene expression profile of peripheral blood cells. Genes related to circadian rhythm were highly associated with visceral fat area and period homolog 1 (PER1) showed the most significant negative correlation with visceral fat area. However, regulation of adipose Per1 remains poorly understood. The present study was designed to understand the regulation of Per1 in adipose tissues. Adipose Per1 mRNA levels of ob/ob mice were markedly low at 25 and 35 weeks of age. The levels of other core clock genes of white adipose tissues were also low in ob/ob mice at 25 and 35 weeks of age. Per1 mRNA was mainly expressed in the mature adipocyte fraction (MAF) and it was significantly low in MAF of ob/ob mice. To examine the possible mechanisms, 3T3-L1 adipocytes were treated with H2O2, tumor necrosis factor-α (TNF-α), S100A8, and lipopolysaccharide (LPS). However, no significant changes in Per1 mRNA level were observed by these agents. Exposure of cultured 3T3-L1 adipocytes to low temperature (33°C) decreased Per1 and catalase, and increased monocyte chemoattractant protein-1 (Mcp-1) mRNA levels. Hypothermia also worsened insulin-mediated Akt phosphorylation in 3T3-L1 adipocytes. Finally, telemetric analysis showed low temperature of adipose tissues in ob/ob mice. In obesity, adipose hypothermia seems to accelerate adipocyte dysfunction.  相似文献   
992.
993.
Single immunoglobulin interleukin-1 receptor-related molecule (SIGIRR) is one of the immunoglobulin-like membrane proteins that is crucial for negative regulation of toll-like receptor 4 (TLR4) and interleukin-1 receptor. Despite the importance of understanding its expression and function, knowledge is limited on the regulatory mechanism in the epithelial tissues, such as the liver, lung, and gut, where its predominant expression is originally described. Here, we found expression of SIGIRR in non-epithelial innate immune cells, including primary peripheral blood monocytes, polymorphonuclear neutrophils, monocytic RAW264 cells, and neutrophilic-differentiated HL-60 cells. Consistent with previous findings in epithelial tissues, SIGIRR gene and protein expression were also down-regulated by LPS treatment in a time-dependent manner in primary blood monocytes and polymorphonuclear neutrophils. A reduction was also observed in RAW264 and differentiated HL-60 cells. Notably, exogenous introduction of the dominant negative form of TLR4 and siRNA of p38 resulted in inhibition of LPS-induced SIGIRR down-regulation, whereas treatment with p38 activator anisomycin showed a dose-dependent decrease in SIGIRR expression, suggesting TLR4-p38 signal as a critical pathway for LPS-induced SIGIRR down-regulation. Finally, reporter gene and chromatin immunoprecipitation assays demonstrated that Sp1 is a key factor that directly binds to the proximal promoter of SIGIRR gene and consequently regulates basal SIGIRR expression, which is negatively regulated by the LPS-dependent TLR4-p38 pathway. In summary, the data precisely demonstrate how LPS down-regulates SIGIRR expression and provide a role of LPS signal that counteracts Sp1-dependent basal promoter activation of SIGIRR gene via TLR4-p38 pathway in non-epithelial innate immune cells.  相似文献   
994.
Expression of CGS1, which codes for an enzyme of methionine biosynthesis, is feedback-regulated by mRNA degradation in response to S-adenosyl-l-methionine (AdoMet). In vitro studies revealed that AdoMet induces translation arrest at Ser-94, upon which several ribosomes stack behind the arrested one, and mRNA degradation occurs at multiple sites that presumably correspond to individual ribosomes in a stacked array. Despite the significant contribution of stacked ribosomes to inducing mRNA degradation, little is known about the ribosomes in the stacked array. Here, we assigned the peptidyl-tRNA species of the stacked second and third ribosomes to their respective codons and showed that they are arranged at nine-codon intervals behind the Ser-94 codon, indicating tight stacking. Puromycin reacts with peptidyl-tRNA in the P-site, releasing the nascent peptide as peptidyl-puromycin. This reaction is used to monitor the activity of the peptidyltransferase center (PTC) in arrested ribosomes. Puromycin reaction of peptidyl-tRNA on the AdoMet-arrested ribosome, which is stalled at the pre-translocation step, was slow. This limited reactivity can be attributed to the peptidyl-tRNA occupying the A-site at this step rather than to suppression of PTC activity. In contrast, puromycin reactions of peptidyl-tRNA with the stacked second and third ribosomes were slow but were not as slow as pre-translocation step ribosomes. We propose that the anticodon end of peptidyl-tRNA resides in the A-site of the stacked ribosomes and that the stacked ribosomes are stalled at an early step of translocation, possibly at the P/E hybrid state.  相似文献   
995.
Autologous c-kit+ cardiac progenitor cells (CPCs) are currently used in the clinic to treat heart disease. CPC-based regeneration may be further augmented by better understanding molecular mechanisms of endogenous cardiac repair and enhancement of pro-survival signaling pathways that antagonize senescence while also increasing differentiation. The prolyl isomerase Pin1 regulates multiple signaling cascades by modulating protein folding and thereby activity and stability of phosphoproteins. In this study, we examine the heretofore unexplored role of Pin1 in CPCs. Pin1 is expressed in CPCs in vitro and in vivo and is associated with increased proliferation. Pin1 is required for cell cycle progression and loss of Pin1 causes cell cycle arrest in the G1 phase in CPCs, concomitantly associated with decreased expression of Cyclins D and B and increased expression of cell cycle inhibitors p53 and retinoblastoma (Rb). Pin1 deletion increases cellular senescence but not differentiation or cell death of CPCs. Pin1 is required for endogenous CPC response as Pin1 knock-out mice have a reduced number of proliferating CPCs after ischemic challenge. Pin1 overexpression also impairs proliferation and causes G2/M phase cell cycle arrest with concurrent down-regulation of Cyclin B, p53, and Rb. Additionally, Pin1 overexpression inhibits replicative senescence, increases differentiation, and inhibits cell death of CPCs, indicating that cell cycle arrest caused by Pin1 overexpression is a consequence of differentiation and not senescence or cell death. In conclusion, Pin1 has pleiotropic roles in CPCs and may be a molecular target to promote survival, enhance repair, improve differentiation, and antagonize senescence.  相似文献   
996.
The receptor for advanced glycation end products (RAGE) is involved in the pathogenesis of many inflammatory, degenerative, and hyperproliferative diseases, including cancer. Previously, we revealed mechanisms of downstream signaling from ligand-activated RAGE, which recruits TIRAP/MyD88. Here, we showed that DNAX-activating protein 10 (DAP10), a transmembrane adaptor protein, also binds to RAGE. By artificial oligomerization of RAGE alone or RAGE-DAP10, we found that RAGE-DAP10 heterodimer formation resulted in a marked enhancement of Akt activation, whereas homomultimeric interaction of RAGE led to activation of caspase 8. Normal human epidermal keratinocytes exposed to S100A8/A9, a ligand for RAGE, at a nanomolar concentration mimicked the pro-survival response of RAGE-DAP10 interaction, although at a micromolar concentration, the cells mimicked the pro-apoptotic response of RAGE-RAGE. In transformed epithelial cell lines, A431 and HaCaT, in which endogenous DAP10 was overexpressed, and S100A8/A9, even at a micromolar concentration, led to cell growth and survival due to RAGE-DAP10 interaction. Functional blocking of DAP10 in the cell lines abrogated the Akt phosphorylation from S100A8/A9-activated RAGE, eventually leading to an increase in apoptosis. Finally, S100A8/A9, RAGE, and DAP10 were overexpressed in the psoriatic epidermis. Our findings indicate that the functional interaction between RAGE and DAP10 coordinately regulates S100A8/A9-mediated survival and/or apoptotic response of keratinocytes.  相似文献   
997.
In eukaryotes, heat shock protein 90 (Hsp90) is an essential ATP-dependent molecular chaperone that associates with numerous client proteins. HtpG, a prokaryotic homolog of Hsp90, is essential for thermotolerance in cyanobacteria, and in vitro it suppresses the aggregation of denatured proteins efficiently. Understanding how the non-native client proteins bound to HtpG refold is of central importance to comprehend the essential role of HtpG under stress. Here, we demonstrate by yeast two-hybrid method, immunoprecipitation assays, and surface plasmon resonance techniques that HtpG physically interacts with DnaJ2 and DnaK2. DnaJ2, which belongs to the type II J-protein family, bound DnaK2 or HtpG with submicromolar affinity, and HtpG bound DnaK2 with micromolar affinity. Not only DnaJ2 but also HtpG enhanced the ATP hydrolysis by DnaK2. Although assisted by the DnaK2 chaperone system, HtpG enhanced native refolding of urea-denatured lactate dehydrogenase and heat-denatured glucose-6-phosphate dehydrogenase. HtpG did not substitute for DnaJ2 or GrpE in the DnaK2-assisted refolding of the denatured substrates. The heat-denatured malate dehydrogenase that did not refold by the assistance of the DnaK2 chaperone system alone was trapped by HtpG first and then transferred to DnaK2 where it refolded. Dissociation of substrates from HtpG was either ATP-dependent or -independent depending on the substrate, indicating the presence of two mechanisms of cooperative action between the HtpG and the DnaK2 chaperone system.  相似文献   
998.
999.
1000.
To infer the evolutionary mechanism of phenotypic variation among isolated island populations, we investigated coat colour and genetic variation in the large Japanese field mouse (Apodemus speciosus) on the Izu Islands (Ohshima, Niijima, Kouzushima, and Miyakejima). Coat colour in the most remote population (Miyakejima) was unique and significantly darker than that in the other populations. Ohshima that is closest to the source population showed variation in coat colour within its population. Phylogeographical analyses using mitochondrial and microsatellite markers suggested that the island populations (except Kouzushima) were founded sequentially from the closest Ohshima to remote Niijima and Miyakejima during or before the penultimate interglacial period. Secondary gene flow from the source population was rare and occurred only for the closest (Ohshima) population. In addition, we found that an amino acid mutation in the Agouti signalling protein gene (Asip) was associated with coat colour variation among the island populations. The mutation was rare in the source population but completely fixed in the Miyakejima population. The phenotypic and genetic variation suggested that severe reduction of genetic variation and changes in allele frequency as a result of sequential colonization (i.e. the founder effect) had significant effects on colour polymorphism. The findings of the present study suggest that the founder effect, in addition to natural selection, facilitated the morphological changes below the species level over a relatively long time scale. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 522–535.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号