首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3998篇
  免费   184篇
  国内免费   2篇
  2022年   21篇
  2021年   33篇
  2020年   20篇
  2019年   31篇
  2018年   48篇
  2017年   33篇
  2016年   55篇
  2015年   114篇
  2014年   139篇
  2013年   266篇
  2012年   265篇
  2011年   246篇
  2010年   160篇
  2009年   131篇
  2008年   261篇
  2007年   259篇
  2006年   243篇
  2005年   273篇
  2004年   238篇
  2003年   267篇
  2002年   285篇
  2001年   58篇
  2000年   56篇
  1999年   62篇
  1998年   85篇
  1997年   55篇
  1996年   48篇
  1995年   40篇
  1994年   29篇
  1993年   31篇
  1992年   35篇
  1991年   34篇
  1990年   26篇
  1989年   16篇
  1988年   17篇
  1987年   22篇
  1986年   14篇
  1985年   23篇
  1984年   16篇
  1983年   10篇
  1982年   17篇
  1981年   21篇
  1980年   12篇
  1979年   12篇
  1978年   8篇
  1977年   7篇
  1976年   8篇
  1975年   7篇
  1974年   5篇
  1973年   5篇
排序方式: 共有4184条查询结果,搜索用时 15 毫秒
991.
Soy-protein isolate (SPI) enhances liver cell damage in Long-Evans rats with a cinnamon-like coat color (LEC rats), which have a defect in Atp7b, the Wilson disease gene. Animals administered an SPI-diet from an age of six weeks died significantly earlier than those administered a control-diet, AIN-93G, from severe liver cell damage associated with jaundice. Since the liver copper level was higher with the SPI-diet than the control-diet, one of the reasons for SPI-toxicity to LEC rats might be due to the higher uptake of copper into liver cells. In the present study, liver levels of glutathione, and liver and intestinal mRNA and protein levels were determined for metallothionein, MT-1 and MT-2. Furthermore, liver and intestinal mRNA expression for the high affinity copper transporter, Ctr1, was determined. None of the parameters showed any significant differences between the SPI-diet and control-diet groups, except for Ctr1 mRNA levels in the liver. It is thus suggested that SPI enhances liver cell copper uptake through induction of Ctr1 expression and this might be the mechanism underlying increased liver damage in LEC rats.  相似文献   
992.
Adiponectin, an adipocyte-derived protein, consists of collagen-like fibrous and complement C1q-like globular domains, and circulates in human plasma in a multimeric form. The protein exhibits anti-diabetic and anti-atherogenic activities. However, adiponectin plasma concentrations are low in obese subjects, and hypoadiponectinemia is associated with the metabolic syndrome, which is a cluster of insulin resistance, type 2 diabetes mellitus, hypertension, and dyslipidemia. We have recently reported a missense mutation in the adiponectin gene, in which isoleucine at position 164 in the globular domain is substituted with threonine (I164T). Subjects with this mutation showed markedly low level of plasma adiponectin and clinical features of the metabolic syndrome. Here, we examined the molecular characteristics of the mutant protein associated with a genetic cause of hypoadiponectinemia. The current study revealed (1) the mutant protein showed an oligomerization state similar to the wild-type as determined by gel filtration chromatography and, (2) the mutant protein exhibited normal insulin-sensitizing activity, but (3) pulse-chase study showed abnormal secretion of the mutant protein from adipose tissues. Our results suggest that I164T mutation is associated with hypoadiponectinemia through disturbed secretion into plasma, which may contribute to the development of the metabolic syndrome.  相似文献   
993.
We found opposite regulation of uncoupling protein 3 (UCP3) in slow-twitch soleus and fast-twitch gastrocnemius muscles of rats during cold exposure. Namely, the UCP3 mRNA level was downregulated in the soleus muscles, but upregulated in the gastrocnemius muscles after a 24-h cold exposure. In the analysis of UCP3 protein, we first succeeded in detecting UCP3 short-form as well as the long-form in vivo, which levels were decreased markedly in the cold-exposed soleus muscles. However, the levels of UCP3 and cytochrome oxidase subunit IV were well maintained in the cold-exposed gastrocnemius muscles with a rise in the total mitochondrial protein level, suggesting an increase of total oxidative ability. The fast-twitch muscle rather than the slow-twitch one may play an important role in adaptive responses, including thermogenesis under acute cold exposure.  相似文献   
994.
The epidermal growth factor (EGF) receptor has an important role in cellular proliferation, and the enzymatic activity of phospholipase C (PLC)-gamma1 is regarded to be critical for EGF-induced mitogenesis. In this study, we report for the first time a phospholipase complex composed of PLC-gamma1 and phospholipase D2 (PLD2). PLC-gamma1 is co-immunoprecipitated with PLD2 in COS-7 cells. The results of in vitro binding analysis and co-immunoprecipitation analysis in COS-7 cells show that the Src homology (SH) 3 domain of PLC-gamma1 binds to the proline-rich motif within the Phox homology (PX) domain of PLD2. The interaction between PLC-gamma1 and PLD2 is EGF stimulation-dependent and potentiates EGF-induced inositol 1,4,5-trisphosphate (IP(3)) formation and Ca(2+) increase. Mutating Pro-145 and Pro-148 within the PX domain of PLD2 to leucines disrupts the interaction between PLC-gamma1 and PLD2 and fails to potentiate EGF-induced IP(3) formation and Ca(2+) increase. However, neither PLD2 wild type nor PLD2 mutant affects the EGF-induced tyrosine phosphorylation of PLC-gamma1. These findings suggest that, upon EGF stimulation, PLC-gamma1 directly interacts with PLD2 and this interaction is important for PLC-gamma1 activity.  相似文献   
995.
996.
Many infants who undergo cardiac surgery have a congenital cyanotic defect where the heart is chronically perfused with hypoxemic blood. Infant hearts adapt to chronic hypoxemia by activation of intracellular protein kinase signal transduction pathways. However, the involvement of heat shock protein 70 in adaptation to chronic hypoxemia and its role in protein kinase signaling pathways is unknown. We determined expression of message and subcellular protein distribution for inducible (Hsp70i) and constitutive heat shock protein 70 (Hsc70) in chronically hypoxic and normoxic infant human and rabbit hearts and their relationship to protein kinases. In chronically hypoxic human and rabbit hearts message levels for Hsp70i were elevated 4- to 5-fold compared with normoxic hearts, Hsp70i protein was redistributed from the particulate to the cytosolic fraction. In normoxic infants Hsp70i protein was distributed almost equally between the cytosolic and particulate fractions. Hsc70 message and subcellular distribution of Hsc70 protein were unaffected by chronic hypoxia. We then determined if protein kinases influence Hsp70i protein subcellular distribution. In rabbit hearts SB203580 and chelerythrine reduced Hsp70i message levels, whereas SB203580, chelerythrine, and curcumin reversed the subcellular redistribution of Hsp70i protein caused by chronic hypoxia, with no effect in normoxic hearts, indicating regulation of Hsp70i message and subcellular distribution of Hsp70i protein in chronically hypoxic rabbit hearts is influenced by protein kinase C and mitogen-activated protein kinases, specifically p38 MAPK and JNK. We conclude the Hsp70 signal transduction pathway plays an important role in adaptation of infant human and rabbit hearts to chronic hypoxemia.  相似文献   
997.
998.
Aggregation of huntingtin (htt) in neuronal inclusions is associated with the development of Huntington's disease (HD). Previously, we have shown that mutant htt fragments with polyglutamine (polyQ) tracts in the pathological range (>37 glutamines) form SDS-resistant aggregates with a fibrillar morphology, whereas wild-type htt fragments with normal polyQ domains do not aggregate. In this study we have investigated the co-aggregation of mutant and wild-type htt fragments. We found that mutant htt promotes the aggregation of wild-type htt, causing the formation of SDS-resistant co-aggregates with a fibrillar morphology. Conversely, mutant htt does not promote the fibrillogenesis of the polyQ-containing protein NOCT3 or the polyQ-binding protein PQBP1, although these proteins are recruited into inclusions containing mutant htt aggregates in mammalian cells. The formation of mixed htt fibrils is a highly selective process that not only depends on polyQ tract length but also on the surrounding amino acid sequence. Our data suggest that mutant and wild-type htt fragments may also co-aggregate in neurons of HD patients and that a loss of wild-type htt function may contribute to HD pathogenesis.  相似文献   
999.
The endoplasmic reticulum (ER) enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, which converts HMG-CoA to mevalonate, catalyzes the ratelimiting step in cholesterol biosynthesis. Because this mevalonate pathway also produces several non-sterol isoprenoid compounds, the level of HMG-CoA reductase activity may coordinate many cellular processes and functions. We used gene targeting to knock out the mouse HMG-CoA reductase gene. The heterozygous mutant mice (Hmgcr+/-) appeared normal in their development and gross anatomy and were fertile. Although HMG-CoA reductase activities were reduced in Hmgcr+/- embryonic fibroblasts, the enzyme activities and cholesterol biosynthesis remained unaffected in the liver from Hmgcr+/- mice, suggesting that the haploid amount of Hmgcr gene is not rate-limiting in the hepatic cholesterol homeostasis. Consistently, plasma lipoprotein profiles were similar between Hmgcr+/- and Hmgcr+/+ mice. In contrast, the embryos homozygous for the Hmgcr mutant allele were recovered at the blastocyst stage, but not at E8.5, indicating that HMG-CoA reductase is crucial for early development of the mouse embryos. The lethal phenotype was not completely rescued by supplementing the dams with mevalonate. Although it has been postulated that a second, peroxisome-specific HMG-CoA reductase could substitute for the ER reductase in vitro, we speculate that the putative peroxisomal reductase gene, if existed, does not fully compensate for the lack of the ER enzyme at least in embryogenesis.  相似文献   
1000.
Regulating the intracellular Na+/K+ ratio is an essential process for salinity tolerance. The yeast mutant, can, which is deficient in calcineurin, can not grow on medium containing Na+ because it is unable to regulate the intracellular Na+/K+ ratio. Expression of the STO gene of Arabidopsis thaliana in the can mutant complements the salt-sensitive phenotype. A protein of Arabidopsis, an H-protein promoter binding factor (HPPBF-1), that binds to STO protein was isolated. HPPBF-1 cDNA has a sequence encoding a Myb DNA binding-motif and its gene expression is induced by salt stress. Furthermore, HPPBF-1 protein is localized in the nucleus. Although, the expression level of STO is not induced under salt-stress conditions, overexpression of STO in a transgenic Arabidopsis plant gave it a higher salt tolerance than was observed in the wild type. When STO transgenic plants and wild-type plants were subjected to salt stress, root growth was increased by 33-70% in the transgenic plants under salt stress. These results suggest that STO is involved in salt-stress responses in Arabidopsis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号