首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3589篇
  免费   163篇
  国内免费   2篇
  3754篇
  2022年   23篇
  2021年   29篇
  2020年   18篇
  2019年   29篇
  2018年   47篇
  2017年   30篇
  2016年   48篇
  2015年   101篇
  2014年   127篇
  2013年   245篇
  2012年   245篇
  2011年   225篇
  2010年   145篇
  2009年   124篇
  2008年   238篇
  2007年   241篇
  2006年   230篇
  2005年   252篇
  2004年   220篇
  2003年   245篇
  2002年   270篇
  2001年   37篇
  2000年   37篇
  1999年   39篇
  1998年   71篇
  1997年   44篇
  1996年   39篇
  1995年   40篇
  1994年   26篇
  1993年   29篇
  1992年   29篇
  1991年   29篇
  1990年   19篇
  1989年   13篇
  1988年   11篇
  1987年   13篇
  1986年   10篇
  1985年   14篇
  1984年   11篇
  1983年   9篇
  1982年   16篇
  1981年   17篇
  1980年   10篇
  1979年   9篇
  1978年   5篇
  1977年   6篇
  1976年   7篇
  1975年   7篇
  1974年   4篇
  1971年   5篇
排序方式: 共有3754条查询结果,搜索用时 15 毫秒
131.
Recent reports have shown that the endoplasmic reticulum (ER) stress is relevant to the pathogenesis of Alzheimer disease. Following the amyloid cascade hypothesis, we therefore attempted to investigate the effects of ER stress on amyloid-beta peptide (Abeta) generation. In this study, we found that ER stress altered the localization of amyloid precursor protein (APP) from late compartments to early compartments of the secretory pathway, and decreased the level of Abeta 40 and Abeta 42 release by beta- and gamma-cutting. Transient transfection with BiP/GRP78 also caused a shift of APP and a reduction in Abeta secretion. It was revealed that the ER stress response facilitated binding of BiP/GRP78 to APP, thereby causing it to be retained in the early compartments apart from a location suitable for the cleavages of Abeta. These findings suggest that induction of BiP/GRP78 during ER stress may be one of the regulatory mechanisms of Abeta generation.  相似文献   
132.
Orgil U  Araki H  Tangchaiburana S  Berkey R  Xiao S 《Genetics》2007,176(4):2317-2333
The RPW8 locus of Arabidopsis thaliana confers broad-spectrum resistance to powdery mildew pathogens. In many A. thaliana accessions, this locus contains two homologous genes, RPW8.1 and RPW8.2. In some susceptible accessions, however, these two genes are replaced by HR4, a homolog of RPW8.1. Here, we show that RPW8.2 from A. lyrata conferred powdery mildew resistance in A. thaliana, suggesting that RPW8.2 might have gained the resistance function before the speciation of A. thaliana and A. lyrata. To investigate how RPW8 has been maintained in A. thaliana, we examined the nucleotide sequence polymorphisms in RPW8 from 51 A. thaliana accessions, related disease reaction phenotypes to the evolutionary history of RPW8.1 and RPW8.2, and identified mutations that confer phenotypic variations. The average nucleotide diversities were high at RPW8.1 and RPW8.2, showing no sign of selective sweep. Moreover, we found that expression of RPW8 incurs fitness benefits and costs on A. thaliana in the presence and absence of the pathogens, respectively. Our results suggest that polymorphisms at the RPW8 locus in A. thaliana may have been maintained by complex selective forces, including those from the fitness benefits and costs both associated with RPW8.  相似文献   
133.
In the bright fields, stomata of the plants are fully opened to raise the transpiration rate and CO2 uptake required for photosynthesis. Stomatal opening is driven by the activation of plasma membrane H+-ATPase and K+in channels, and the Ca2+-dependent inactivation and blockage of both components were supposed to be inevitable function to regulate the stomatal aperture. Although, it is still obscure how these activities are regulated at the open state. Application of an amphipathic membrane creator, trinitrophenol (TNP), instantly generates the convex curvature in the plasma membrane, which occurs in the phases of stomatal opening and closure. TNP surely activates mechanosensitive Ca2+-permeable channels and attenuates the promotion of stomatal opening, but does not inhibit and promote stomatal closure. These results suggest that activation of mechanosensitive Ca2+-permeable channels regulates the opening phase of stomata in plants.  相似文献   
134.
Tom1 (target of Myb 1) and its related proteins (Tom1L1/Srcasm and Tom1L2) constitute a protein family, which share an N-terminal VHS (Vps27, Hrs and STAM) domain and a following GAT (GGA and Tom1) domain. Tom1L1 has potential binding sequences for Tsg101, which is one of key regulators of the multivesicular body (MVB) formation. To obtain a clue to the role of Tom1L1 in the MVB formation, we have characterized the Tom1L1-Tsg101 interaction. We have found that not only the PTAP sequence in the GAT domain but also the PSAP sequence in the C-terminal region of Tom1L1 is responsible for its interaction with the UEV domain of Tsg101 and competes with the HIV-1 Gag protein for the Tsg101 interaction. Furthermore, we show that, by means of Tsg101, Tom1L1 associates with the midbody during cytokinesis as well as endosomes. Taken into account the topological equivalency among the events of the MVB formation, viral egress from the cell, and cytokinesis, the data obtained here suggest that Tom1L1 is implicated in these three distinct cellular processes.  相似文献   
135.
Obese conditions increase the expression of adipocytokine monocyte chemoattractant protein-1 (MCP-1) in adipose tissue as well as MCP-1 plasma levels. To investigate the mechanism behind increased MCP-1, we used a model in which 3T3-L1 adipocytes were artificially hypertrophied by preloading with palmitate in vitro. As observed in obesity, under our model conditions, palmitate-preloaded cells showed significantly increased oxidative stress and increased MCP-1 expression relative to control cells. This increased MCP-1 expression was enhanced by adding exogenous tumor necrosis factor-alpha (TNF-alpha; 17.8-fold vs. control cells, P < 0.01) rather than interleukin-1beta (IL-1beta; 2.6-fold vs. control cells, P < 0.01). However, endogenous TNF-alpha and IL-1beta release was not affected in hypertrophied cells, suggesting that these endogenous cytokines do not mediate hypertrophy-induced increase in MCP-1. MCP-1 secretion from hypertrophied cells was significantly decreased by treatment with antioxidant N-acetyl-cysteine, JNK inhibitors SP600125 and JIP-1 peptide, and IkappaB phosphorylation inhibitors BAY 11-7085 and BMS-345541 (P < 0.01). MCP-1 secretion was not affected by peroxisome proliferator-activated receptor-gamma (PPARgamma) antagonists assayed. Adiponectin, another adipocytokine studied in parallel, also showed increased release in hypertrophy relative to control cells. But in contrast to MCP-1, adiponectin release was significantly suppressed by both exogenous TNF-alpha and IL-1beta as well as by PPARgamma antagonists bisphenol A diglycidyl ether and T0070907 (P < 0.01). JNK inhibitors and IkappaB phosphorylation inhibitors showed no significant effect on adiponectin. We conclude that adipocyte hypertrophy through palmitate loading causes oxidative stress, which in turn increases MCP-1 expression and secretion through JNK and IkappaB signaling. In contrast, the parallel increase in adiponectin expression appears to be related to the PPARgamma ligand properties of palmitate.  相似文献   
136.
137.
138.
Crystalline tyrosine phenol lyase was prepared from the cell extract of Erwinia herbicola grown in a medium supplemented with l-tyrosine. The crystalline enzyme was homogeneous by the criteria of ultracentrifugation and acrylamide gel electrophoresis. The molecular weight was determined to be approximately 259,000. The crystalline enzyme catalyzed the conversion of l-tyrosine into phenol, pyruvate and ammonia, in the presence of added pyridoxal phosphate. The enzyme also catalyzed pyruvate formation from d-tyrosine, S-methyl-l-cysteine, 3, 4-dihydroxyphenyl-l-alanine, l- and d-serine, and l- and d-cysteine, but at lower rates than from l-tyrosine. l-Phenyl-alanine, l-alanine, phenol and pyrocatechol inhibited pyruvate formation from l-tyrosine.

Crystalline tyrosine phenol lyase from Erwinia herbicola is inactive in the absence of added pyridoxal phosphate. Binding of pyridoxal phosphate to the apoenzyme is accompanied by pronounced increase in absorbance at 340 and 425 mμ. The amount of pyridoxal phosphate bound to the apoenzyme was determined by equilibrium dialysis to be 2 moles per mole of enzyme. Addition of the substrate, l-tyrosine, or the competitive inhibitors, l-alanine and l-phenyl-alanine, to the holoenzyme causes appearance of a new absorption peak near 500 mμ which disappears as the substrate is decomposed but remains unchanged in the presence of the inhibitor.  相似文献   
139.
3β-Hydroxysteroid oxidase (3β-hydroxysteroid: oxygen oxidoreductase, EC 1.1.3.6.) from the culture supernatant of Brevibacterium sterolicum ATCC 21387 has a molecular weight of 32,500 and an isoelectric point of 8.9. The enzyme contained 258 amino acid residues and the composition revealed a distinctive feature of a relatively high amount of proline and the absence of alanine and tryptophan. The crystalline enzyme exhibited an absorption spectrum characteristic of a flavoprotein with absorption maxima at 280, 390, and 470 nm with a shoulder at 490 nm. Anaerobic addition of dehydro-epi-androsterone as well as sodium dithionite to the enzyme produced a disappearance of the peaks at 390 and 470 nm. The flavin moiety of the enzyme was isolated and identified as flavin adenine dinucleotide, 1 mole of which was found per mole of protein. The enzyme is sulfhydryl dependent and was inactivated by silver and mercury compounds. Analysis of the enzyme protein by atomic absorption spectrophotometry failed to detect any significant quantity of heavy metals.

Various 3β-hydroxysteroids were oxidized and the relative rates of the oxidation were cholesterol, 100; dehydro-epi-androsterone, 41; pregnenolone, 22; and β-sitosterol, 20. The oxidation product of cholesterol by the enzyme was crystallized and identified as 4-cholesten-3-one by melting point, elementary analysis, optical rotation, UV, IR and NMR spectra. The oxidation of cholesterol proceeded as follows:

The enzyme would be used for some analytical and preparative purposes in the field of steroid chemistry, e.g., microdetermination of cholesterol in serum.  相似文献   
140.
Linoleic acid, and its hydroperoxides and secondary autoxidation products were orally administered to rats (400 mg/rat). Their effects on hepatic lipid metabolism were examined. Linoleic acid reduced the activities of de novo synthesis of fatty acids and acetyl-CoA carboxylase. It decreased the CoASH level and caused the accumulation of long-chain acyl-CoA. Hydroperoxides changed the compositions of unsaturated fatty acids in the hepatic lipids and lowered the content of neutral lipids. Secondary products stimulated carnitine palmitoyltransferase and decreased the content of neutral lipids. They reduced the activities of de novo synthesis of fatty acids and acetyl-CoA carboxylase, and the levels of CoASH and acetyl-CoA. Thus, the effect of secondary products was apparently different from those of linoleic acid and its hydroperoxides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号