首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3899篇
  免费   188篇
  国内免费   2篇
  4089篇
  2022年   24篇
  2021年   33篇
  2020年   20篇
  2019年   31篇
  2018年   52篇
  2017年   32篇
  2016年   54篇
  2015年   108篇
  2014年   137篇
  2013年   263篇
  2012年   260篇
  2011年   237篇
  2010年   157篇
  2009年   141篇
  2008年   256篇
  2007年   254篇
  2006年   251篇
  2005年   266篇
  2004年   240篇
  2003年   259篇
  2002年   284篇
  2001年   50篇
  2000年   52篇
  1999年   49篇
  1998年   76篇
  1997年   45篇
  1996年   42篇
  1995年   42篇
  1994年   27篇
  1993年   32篇
  1992年   33篇
  1991年   32篇
  1990年   27篇
  1989年   16篇
  1988年   19篇
  1987年   17篇
  1986年   13篇
  1985年   17篇
  1984年   13篇
  1983年   13篇
  1982年   18篇
  1981年   17篇
  1980年   10篇
  1979年   11篇
  1978年   7篇
  1977年   7篇
  1976年   9篇
  1975年   7篇
  1974年   7篇
  1969年   4篇
排序方式: 共有4089条查询结果,搜索用时 15 毫秒
91.
Adipose tissue-derived mesenchymal stem cells (ASCs) have been reported to be multipotent and to differentiate into various cell types, including osteocytes, adipocytes, chondrocytes, and neural cells. Recently, many authors have reported that ASCs are also able to differentiate into vascular endothelial cells (VECs) in vitro. However, these reports included the use of medium containing fetal bovine serum for endothelial differentiation. In the present study, we have developed a novel method for differentiating mouse ASCs into VECs under serum-free conditions. After the differentiation culture, over 80% of the cells expressed vascular endothelial-specific marker proteins and could take up low-density lipoprotein in vitro. This protocol should be helpful in clarifying the mechanisms of ASC differentiation into the VSC lineage.  相似文献   
92.
Kinetics of glial glutamine (GLN) transport to the extracellular fluid (ECF) and the mechanism of GLN(ECF) transport into the neuron--crucial pathways in the glutamine-glutamate cycle--were studied in vivo in mildly hyperammonemic rat brain, by NMR and microdialysis to monitor intra- and extracellular GLN. The minimum rate of glial GLN efflux, determined from the rate of GLN(ECF) increase during perfusion of alpha-(methylamino)isobutyrate (MeAIB), which inhibits neuronal GLN(ECF) uptake by sodium-coupled amino-acid transporter (SAT), was 2.88 +/- 0.22 micromol/g/h at steady-state brain [GLN] of 8.5 +/- 0.8 micromol/g. Our previous study showed that the rate of glutamine synthesis under identical experimental conditions was 3.3 +/- 0.3 micromol/g/h. At steady-state glial [GLN], this is equal to its efflux rate to the ECF. Comparison of the two rates suggests that SAT mediates at least 87 +/- 8% (= 2.88/3.3 x 100%) of neuronal GLN(ECF) uptake. While MeAIB induced > 2-fold elevation of GLN(ECF), no sustained elevation was observed during perfusion of the selective inhibitor of LAT, 2-amino-bicyclo[1,1,2]heptane-2-carboxylic acid (BCH), or of d-threonine, a putative selective inhibitor of ASCT2-mediated GLN uptake. The results strongly suggest that SAT is the predominant mediator of neuronal GLN(ECF) uptake in adult rat brain in vivo.  相似文献   
93.
Pseudomonas cichorii is the major causal agent of bacterial rot of lettuce. Collapse and browning symptoms were observed in lettuce leaf tissue from 15 to 24 h after inoculation (HAI) with P. cichorii; superoxide anion generation was detected at 1 to 6 HAI; and cell death was induced at 6 HAI, reaching a maximum at approximately 9 and 12 HAI. Heterochromatin condensation and DNA laddering also were observed within 3 HAI. Pharmacological studies showed that induction of cell death and DNA laddering was closely associated with de novo protein synthesis, protein kinase, intracellular reactive oxygen species, DNase, serine protease, and caspase III-like protease. Moreover, chemicals, which inhibited the induction of cell death and DNA laddering, also suppressed the development of disease symptoms. These results suggest that apoptotic cell death might be closely associated with the development of bacterial rot caused by P. cichorii.  相似文献   
94.
We investigated gender difference in the effects of chronic exposure to human growth hormone (hGH) on cardiac risk biomarkers using transgenic mice with non-pulsatile circulating hGH. Blood plasma was obtained from transgenic and control mice at 8, 12, and 16 weeks of age, and was used for the measurement of hGH and the following cardiac risk biomarkers: total cholesterol (CHO), triglyceride (TG), HDL cholesterol (HDL), LDL cholesterol (LDL), non esterified free fatty acids (NEFA), and lipid peroxides (LPO). The hearts and the livers of transgenic mice were weighed and histopathologically examined, and the results were compared with those of control mice. Transgenic males exhibited higher levels of LDL at 8 and 12 weeks of age and higher levels of LPO at every week of age examined, as compared to those of the control males, while transgenic females exhibited somewhat lower levels of LDL and LPO from 8 to 16 weeks of age, as compared to the control females. The relative heart weight in males increased with aging and was significantly higher in the 16-week-old transgenic males compared to those of the control mice. The present results demonstrate that transgenic males had cardiac risk potential caused by chronic-exposure to hGH as compared to females. The results also show that the present transgenic mouse line is a useful model for the study of gender difference in cardiac disorders caused by hGH.  相似文献   
95.
PTP20, also known as HSCF/protein-tyrosine phosphatase K1/fetal liver phosphatase 1/brain-derived phosphatase 1, is a cytosolic protein-tyrosine phosphatase with currently unknown biological relevance. We have identified that the nonreceptor protein-tyrosine kinase Tec-phosphorylated PTP20 on tyrosines and co-immunoprecipitated with the phosphatase in a phosphotyrosine-dependent manner. The interaction between the two proteins involved the Tec SH2 domain and the C-terminal tyrosine residues Tyr-281, Tyr-303, Tyr-354, and Tyr-381 of PTP20, which were also necessary for tyrosine phosphorylation/dephosphorylation. Association between endogenous PTP20 and Tec was also tyrosine phosphorylation-dependent in the immature B cell line Ramos. Finally, the Tyr-281 residue of PTP20 was shown to be critical for deactivating Tec in Ramos cells upon B cell receptor ligation as well as dephosphorylation and deactivation of Tec and PTP20 itself in transfected COS7 cells. Taken together, PTP20 appears to play a negative role in Tec-mediated signaling, and Tec-PTP20 interaction might represent a negative feedback mechanism.  相似文献   
96.

Background  

Rates of molecular evolution vary widely among species. While significant deviations from molecular clock have been found in many taxa, effects of life histories on molecular evolution are not fully understood. In plants, annual/perennial life history traits have long been suspected to influence the evolutionary rates at the molecular level. To date, however, the number of genes investigated on this subject is limited and the conclusions are mixed. To evaluate the possible heterogeneity in evolutionary rates between annual and perennial plants at the genomic level, we investigated 85 nuclear housekeeping genes, 10 non-housekeeping families, and 34 chloroplast genes using the genomic data from model plants including Arabidopsis thaliana and Medicago truncatula for annuals and grape (Vitis vinifera) and popular (Populus trichocarpa) for perennials.  相似文献   
97.
Phyllotaxy is defined as the spatial arrangement of leaves on the stem. The mechanism responsible for this extremely regular pattern is one of the most fascinating enigmas in plant biology. In this study, we identified a gene regulating the phyllotactic pattern in rice. Loss‐of‐function mutants of the DECUSSATE (DEC) gene displayed a phyllotactic conversion from normal distichous pattern to decussate. The dec mutants had an enlarged shoot apical meristem with enhanced cell division activity. In contrast to the shoot apical meristem, the size of the root apical meristem in the dec mutants was reduced, and cell division activity was suppressed. These phenotypes indicate that DEC has opposite functions in the shoot apical meristem and root apical meristem. Map‐based cloning revealed that DEC encodes a plant‐specific protein containing a glutamine‐rich region and a conserved motif. Although its molecular function is unclear, the conserved domain is shared with fungi and animals. Expression analysis showed that several type A response regulator genes that act in the cytokinin signaling pathway were down‐regulated in the dec mutant. In addition, dec seedlings showed a reduced responsiveness to exogenous cytokinin. Our results suggest that DEC controls the phyllotactic pattern by affecting cytokinin signaling in rice.  相似文献   
98.
99.
Autophagy-related degradation selective for mitochondria (mitophagy) is an evolutionarily conserved process that is thought to be critical for mitochondrial quality and quantity control. In budding yeast, autophagy-related protein 32 (Atg32) is inserted into the outer membrane of mitochondria with its N- and C-terminal domains exposed to the cytosol and mitochondrial intermembrane space, respectively, and plays an essential role in mitophagy. Atg32 interacts with Atg8, a ubiquitin-like protein localized to the autophagosome, and Atg11, a scaffold protein required for selective autophagy-related pathways, although the significance of these interactions remains elusive. In addition, whether Atg32 is the sole protein necessary and sufficient for initiation of autophagosome formation has not been addressed. Here we show that the Atg32 IMS domain is dispensable for mitophagy. Notably, when anchored to peroxisomes, the Atg32 cytosol domain promoted autophagy-dependent peroxisome degradation, suggesting that Atg32 contains a module compatible for other organelle autophagy. X-ray crystallography reveals that the Atg32 Atg8 family-interacting motif peptide binds Atg8 in a conserved manner. Mutations in this binding interface impair association of Atg32 with the free form of Atg8 and mitophagy. Moreover, Atg32 variants, which do not stably interact with Atg11, are strongly defective in mitochondrial degradation. Finally, we demonstrate that Atg32 forms a complex with Atg8 and Atg11 prior to and independent of isolation membrane generation and subsequent autophagosome formation. Taken together, our data implicate Atg32 as a bipartite platform recruiting Atg8 and Atg11 to the mitochondrial surface and forming an initiator complex crucial for mitophagy.  相似文献   
100.
Galectin-9 (Gal-9), a lectin having a β-galactoside-binding domain, can induce apoptosis of Th1 cells by binding to TIM-3. In addition, Gal-9 inhibits IgE/Ag-mediated degranulation of mast cell/basophilic cell lines by binding to IgE, thus blocking IgE/Ag complex formation. However, the role of Gal-9 in mast cell function in the absence of IgE is not fully understood. Here, we found that recombinant Gal-9 directly induced phosphorylation of Erk1/2 but not p38 MAPK in a human mast cell line, HMC-1, which does not express FcεRI. Gal-9 induced apoptosis and inhibited PMA/ionomycin-mediated degranulation of HMC-1 cells. On the other hand, Gal-9 induced cytokine and/or chemokine production by HMC-1 cells, dependent on activation of ERK1/2 but not p38 MAPK. In addition, the lectin activity of Gal-9 was required for Gal-9-mediated cytokine secretion by HMC-1 cells. These observations suggest that Gal-9 has dual properties as both a regulator and an activator of mast cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号