首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3107篇
  免费   204篇
  国内免费   1篇
  2023年   12篇
  2022年   16篇
  2021年   42篇
  2020年   17篇
  2019年   42篇
  2018年   40篇
  2017年   43篇
  2016年   50篇
  2015年   104篇
  2014年   96篇
  2013年   175篇
  2012年   185篇
  2011年   191篇
  2010年   115篇
  2009年   129篇
  2008年   175篇
  2007年   148篇
  2006年   175篇
  2005年   161篇
  2004年   170篇
  2003年   143篇
  2002年   140篇
  2001年   89篇
  2000年   96篇
  1999年   92篇
  1998年   29篇
  1997年   36篇
  1996年   25篇
  1995年   19篇
  1994年   23篇
  1993年   30篇
  1992年   51篇
  1991年   51篇
  1990年   35篇
  1989年   28篇
  1988年   49篇
  1987年   24篇
  1986年   23篇
  1985年   35篇
  1984年   32篇
  1983年   19篇
  1982年   15篇
  1981年   15篇
  1980年   14篇
  1979年   12篇
  1975年   14篇
  1974年   10篇
  1972年   12篇
  1969年   9篇
  1968年   11篇
排序方式: 共有3312条查询结果,搜索用时 15 毫秒
121.
ABSTRACT

In natural systems, various metabolic reactions are often spatially organized to increase enzyme activity and specificity. Thus, by spatially arranging enzyme molecules in synthetic systems to imitate these natural systems, it is possible to promote a high rate of enzymatic turnover. In this present study, a normal and mutant form of the scCro DNA-binding protein were shown to bind orthogonally to specific recognition sequences under appropriate conditions. Furthermore, these DNA-binding tags were used to establish an enzyme assay system based on the spatial arrangement of transglutaminase and its substrate at the molecular level. Together, the results of the present study suggest that the scCro-tag may be a powerful tool to facilitate the synthetic spatial arrangement of proteins on a DNA ligand.  相似文献   
122.
Beckwith-Wiedemann syndrome (BWS) is an imprinting-related human disease that is characterized by macrosomia, macroglossia, abdominal wall defects, and variable minor features. BWS is caused by several genetic/epigenetic alterations, such as loss of methylation at KvDMR1, gain of methylation at H19-DMR, paternal uniparental disomy of chromosome 11, CDKN1C mutations, and structural abnormalities of chromosome 11. CDKN1C is an imprinted gene with maternal preferential expression, encoding for a cyclin-dependent kinase (CDK) inhibitor. Mutations in CDKN1C are found in 40 % of familial BWS cases with dominant maternal transmission and in ~5 % of sporadic cases. In this study, we searched for CDKN1C mutations in 37 BWS cases that had no evidence for other alterations. We found five mutations—four novel and one known—from a total of six patients. Four were maternally inherited and one was a de novo mutation. Two frame-shift mutations and one nonsense mutation abolished the QT domain, containing a PCNA-binding domain and a nuclear localization signal. Two missense mutations occurred in the CDK inhibitory domain, diminishing its inhibitory function. The above-mentioned mutations were predicted by in silico analysis to lead to loss of function; therefore, we strongly suspect that such anomalies are causative in the etiology of BWS.  相似文献   
123.
This article documents the addition of 83 microsatellite marker loci and 96 pairs of single‐nucleotide polymorphism (SNP) sequencing primers to the Molecular Ecology Resources Database. Loci were developed for the following species: Bembidion lampros, Inimicus japonicus, Lymnaea stagnalis, Panopea abbreviata, Pentadesma butyracea, Sycoscapter hirticola and Thanatephorus cucumeris (anamorph: Rhizoctonia solani). These loci were cross‐tested on the following species: Pentadesma grandifolia and Pentadesma reyndersii. This article also documents the addition of 96 sequencing primer pairs and 88 allele‐specific primers or probes for Plutella xylostella.  相似文献   
124.
125.
126.
A number of specific, distinct neoplastic entities occur in the pediatric kidney, including Wilms’ tumor, clear cell sarcoma of the kidney (CCSK), congenital mesoblastic nephroma (CMN), rhabdoid tumor of the kidney (RTK), and the Ewing’s sarcoma family of tumors (ESFT). By employing DNA methylation profiling using Illumina Infinium HumanMethylation27, we analyzed the epigenetic characteristics of the sarcomas including CCSK, RTK, and ESFT in comparison with those of the non-neoplastic kidney (NK), and these tumors exhibited distinct DNA methylation profiles in a tumor-type-specific manner. CCSK is the most frequently hypermethylated, but least frequently hypomethylated, at CpG sites among these sarcomas, and exhibited 490 hypermethylated and 46 hypomethylated CpG sites in compared with NK. We further validated the results by MassARRAY, and revealed that a combination of four genes was sufficient for the DNA methylation profile-based differentiation of these tumors by clustering analysis. Furthermore, THBS1 CpG sites were found to be specifically hypermethylated in CCSK and, thus, the DNA methylation status of these THBS1 sites alone was sufficient for the distinction of CCSK from other pediatric renal tumors, including Wilms’ tumor and CMN. Moreover, combined bisulfite restriction analysis could be applied for the detection of hypermethylation of a THBS1 CpG site. Besides the biological significance in the pathogenesis, the DNA methylation profile should be useful for the differential diagnosis of pediatric renal tumors.  相似文献   
127.
Previous studies have shown that deep cerebellar nuclei (DCN)-lesioned mice develop conditioned responses (CR) on delay eyeblink conditioning when a salient tone conditioned stimulus (CS) is used, which suggests that the cerebellum potentially plays a role in more complicated cognitive functions. In the present study, we examined the role of DCN in tone frequency discrimination in the delay eyeblink-conditioning paradigm. In the first experiment, DCN-lesioned and sham-operated mice were subjected to standard simple eyeblink conditioning under low-frequency tone CS (LCS: 1 kHz, 80 dB) or high-frequency tone CS (HCS: 10 kHz, 70 dB) conditions. DCN-lesioned mice developed CR in both CS conditions as well as sham-operated mice. In the second experiment, DCN-lesioned and sham-operated mice were subjected to two-tone discrimination tasks, with LCS+ (or HCS+) paired with unconditioned stimulus (US), and HCS− (or LCS−) without US. CR% in sham-operated mice increased in LCS+ (or HCS+) trials, regardless of tone frequency of CS, but not in HCS− (or LCS−) trials. The results indicate that sham-operated mice can discriminate between LCS+ and HCS− (or HCS+ and LCS−). In contrast, DCN-lesioned mice showed high CR% in not only LCS+ (or HCS+) trials but also HCS− (or LCS−) trials. The results indicate that DCN lesions impair the discrimination between tone frequency in eyeblink conditioning. Our results suggest that the cerebellum plays a pivotal role in the discrimination of tone frequency.  相似文献   
128.

Background

This study aims to examine the relationship between tyrosine and phenylalanine intake at breakfast as precursors of dopamine, and scores on the Torsvall-Åkerstedt Diurnal Type Scale and of mental health in Japanese infants aged 2 to 5 years.

Results

An integrated questionnaire was administered to parents of 1,367 infants attending one of ten nursery schools governed by Kochi City or a kindergarten affiliated with the Faculty of Education at Kochi University (775 answers for analysis: 56.7%) in May and June 2008. Questionnaires included the Torsvall-Åkerstedt Diurnal Type Scale and questions on sleep habits (onset, offset, quality, quantity, and so on), meal habits (content and regularity of timing), and mental health (depressive states). Amount of tyrosine and phenylalanine intake was calculated based on a breakfast content questionnaire and data on the components of amino acids in foods. Infants who ingested more than 800 mg of tyrosine or phenylalanine at breakfast per meal were more morning-type than those who ingested less than 800 mg (ANOVA: P= 0.005). However, this relationship disappeared in the ANCOVA analysis (with the covariance of tryptophan intake, P= 0.894). Infants who ingested more than 800 mg of the two amino acids at breakfast showed significantly higher mental health scores (lower frequency of depressive states) than those who ingested less than 800 mg (ANOVA: P = 0.004). This relationship remained significant when ANCOVA analysis was performed with the covariance of tryptophan (ANCOVA: P= 0.017).

Conclusions

These results suggest that tyrosine and phenylalanine ingested at breakfast are not related with circadian phase, but are relate with mental health in infants.  相似文献   
129.
The interruption of vascular development could cause structural and functional abnormalities in tissues. We have previously reported that short‐term treatment of newborn mice with vascular endothelial growth factor (VEGF) receptor tyrosine kinase inhibitors induces abnormal retinal vascular growth and patterns. An exposure of neonatal mice to high‐concentration oxygen disturbs normal retinal vascular development. The present study aimed to determine (1) whether vascular abnormalities are observed in the retina of newborn mice exposed to high concentrations of oxygen, and (2) how astrocyte network formation is affected following the exposure to hyperoxia. Newborn (postnatal day 0) mice were exposed to 75% oxygen for 48 or 96 hr. During hyperoxia exposure, VEGF expression decreased, and the onset of retinal vascularization was completely suppressed. After completion of the hyperoxic period, retinal vascularization occurred, but it was delayed in a hyperoxic exposure duration‐dependent manner. In retinas of hyperoxia‐exposed mice, dense capillary plexuses were found, and the number of arteries and veins decreased. The astrocyte network formation was slightly delayed under hyperoxic conditions, and the network became denser in retinas of mice with an episode of hyperoxia. Expression of VEGF levels in the avascular retina of mice that were exposed to hyperoxia was higher than that of control mice. These results suggest that short‐term interruption of the onset of vascular development resulting from the reduction in VEGF signals induces abnormal vascular patterns in the mouse retina. The abnormalities in retinal astrocyte behavior might contribute to the formation of an abnormal retinal vascular growth.  相似文献   
130.
Recent studies have shown that Notch signaling is involved in many types of cancers, including oral squamous cell carcinomas (OSCCs). However, the role of Notch signaling in the tumor microenvironment is not yet fully understood. In this study, we investigated the roles of NOTCH3 signaling in cancer associated fibroblasts (CAFs) in OSCCs. Immunohistochemical study of 93 human tongue OSCC cases indicated that about one third of OSCCs showed NOTCH3 expression in CAFs, and that this expression significantly correlated with tumor-size. In vitro study showed that OSCC cell lines, especially HO1-N-1 cells stimulated NOTCH3 expression in normal human dermal fibroblasts (NHDFs) through direct cell-to-cell contact. Immunohistochemical and morphometric analysis using human OSCC samples demonstrated that NOTCH3 expression in CAFs significantly correlated with micro-vessel density in cancer stroma. In vitro angiogenesis assays involving co-culture of NHDFs with HO1-N-1 and human umbilical endothelial cells (HUVECs), and NOTCH3 knockdown in NHDFs using siRNA, demonstrated that HO1-N-1 cells significantly promoted tube formation dependent on NOTCH3-expression in NHDFs. Moreover, NOTCH3 expression in CAFs was related to poor prognosis of the OSCC patients. This work provides a new insight into the role of Notch signaling in CAFs associated with tumor angiogenesis and the possibility of NOTCH3-targeted molecular therapy in OSCCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号