全文获取类型
收费全文 | 846篇 |
免费 | 45篇 |
国内免费 | 1篇 |
专业分类
892篇 |
出版年
2024年 | 1篇 |
2022年 | 5篇 |
2021年 | 13篇 |
2020年 | 4篇 |
2019年 | 12篇 |
2018年 | 12篇 |
2017年 | 12篇 |
2016年 | 16篇 |
2015年 | 32篇 |
2014年 | 42篇 |
2013年 | 55篇 |
2012年 | 66篇 |
2011年 | 72篇 |
2010年 | 36篇 |
2009年 | 38篇 |
2008年 | 60篇 |
2007年 | 53篇 |
2006年 | 64篇 |
2005年 | 34篇 |
2004年 | 57篇 |
2003年 | 46篇 |
2002年 | 48篇 |
2001年 | 13篇 |
2000年 | 15篇 |
1999年 | 14篇 |
1998年 | 4篇 |
1997年 | 4篇 |
1996年 | 6篇 |
1995年 | 3篇 |
1994年 | 4篇 |
1993年 | 6篇 |
1992年 | 4篇 |
1991年 | 3篇 |
1990年 | 7篇 |
1989年 | 5篇 |
1988年 | 7篇 |
1987年 | 1篇 |
1986年 | 2篇 |
1985年 | 2篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1982年 | 2篇 |
1981年 | 2篇 |
1980年 | 3篇 |
1978年 | 1篇 |
1976年 | 2篇 |
1975年 | 1篇 |
1969年 | 1篇 |
排序方式: 共有892条查询结果,搜索用时 11 毫秒
101.
Kazuo Umezawa Itaru Kojima Siro Simizu Yinzhi Lin Hitomi Fukatsu Naoki Koide Yukiomi Nakade Masashi Yoneda 《Human cell》2018,31(2):95-101
Increasing metabolic syndromes including type-2 diabetes mellitus, obesity, and steatohepatitis are serious problems in most countries in the world. Neurodegenerative diseases such as Alzheimer, Parkinson’s, and Huntington’s diseases are increasing in many countries. However, therapy for these diseases is not sufficient yet. Thus, effective chemotherapy for these diseases is being expected. Conophylline is an alkaloid isolated from the leaves of Ervatamia microphylla and related plants. It was found to induce beta-cell differentiation in the precursor pancreatic cells. Oral administration of this compound ameliorated type-2 diabetes mellitus model in mice and rats. Later, fibrosis of the pancreatic islets was found to be greatly reduced by conophylline in the pancreatic islets. It also inhibited chemically induced liver cirrhosis. Further study indicated that conophylline inhibited non-alcoholic steatohepatitis in the model mice. On the one hand, loss of autophagy often causes protein aggregation to give neural cell death. Conophylline was found to activate autophagy in cultured neural cells. Activation of autophagy ameliorated cellular models of Parkinson’s and Huntington’s diseases. Thus, conophylline is likely to be useful for the development of chemotherapy for metabolic and neurodegenerative diseases. 相似文献
102.
Kishimoto E Naito Y Handa O Okada H Mizushima K Hirai Y Nakabe N Uchiyama K Ishikawa T Takagi T Yagi N Kokura S Yoshida N Yoshikawa T 《American journal of physiology. Gastrointestinal and liver physiology》2011,301(2):G230-G238
Human esophageal epithelium is continuously exposed to physical stimuli or to gastric acid that sometimes causes inflammation of the mucosa. Transient receptor potential vanilloid 1 (TRPV1) is a nociceptive, Ca(2+)-selective ion channel activated by capsaicin, heat, and protons. It has been reported that activation of TRPV1 expressed in esophageal mucosa is involved in gastroesophageal reflux disease (GERD) or in nonerosive GERD symptoms. In this study, we examined the expression and function of TRPV1 in the human esophageal epithelial cell line Het1A, focusing in particular on the role of oxidative stress. Interleukin-8 (IL-8) secreted by Het1A cells upon stimulation by capsaicin or acid with/without 4-hydroxy-2-nonenal (HNE) was measured by ELISA. Following capsaicin stimulation, the intracellular production of reactive oxygen species (ROS) was determined using a redox-sensitive fluorogenic probe, and ROS- and HNE-modified proteins were determined by Western blotting using biotinylated cysteine and anti-HNE antibody, respectively. HNE modification of TRPV1 proteins was further investigated by immunoprecipitation after treatment with synthetic HNE. Capsaicin and acid induced IL-8 production in Het1A cells, and this production was diminished by antagonists of TRPV1. Capsaicin also significantly increased the production of intracellular ROS and ROS- or HNE-modified proteins in Het1A cells. Moreover, IL-8 production in capsaicin-stimulated Het1A cells was enhanced by synthetic HNE treatment. Immunoprecipitation studies revealed that TRPV1 was modified by HNE in synthetic HNE-stimulated Het1A cells. We concluded that TRPV1 functions in chemokine production in esophageal epithelial cells, and this function may be regulated by ROS via posttranslational modification of TRPV1. 相似文献
103.
Ogawa M Yoshikawa Y Kobayashi T Mimuro H Fukumatsu M Kiga K Piao Z Ashida H Yoshida M Kakuta S Koyama T Goto Y Nagatake T Nagai S Kiyono H Kawalec M Reichhart JM Sasakawa C 《Cell host & microbe》2011,9(5):376-389
Selective autophagy of bacterial pathogens represents a host innate immune mechanism. Selective autophagy has been characterized on the basis of distinct cargo receptors but the mechanisms by which different cargo receptors are targeted for autophagic degradation remain unclear. In this study we identified a highly conserved Tectonin domain-containing protein, Tecpr1, as an Atg5 binding partner that colocalized with Atg5 at Shigella-containing phagophores. Tecpr1 activity is necessary for efficient autophagic targeting of bacteria, but has no effect on rapamycin- or starvation-induced canonical autophagy. Tecpr1 interacts with WIPI-2, a yeast Atg18 homolog and PI(3)P-interacting protein required for phagophore formation, and they colocalize to phagophores. Although Tecpr1-deficient mice appear normal, Tecpr1-deficient MEFs were defective for selective autophagy and supported increased intracellular multiplication of Shigella. Further, depolarized mitochondria and misfolded protein aggregates accumulated in the Tecpr1-knockout MEFs. Thus, we identify a Tecpr1-dependent pathway as important in targeting bacterial pathogens for selective autophagy. 相似文献
104.
105.
106.
Yoshikazu Arai Jun Ohgane Shuh‐hei Fujishiro Kazuaki Nakano Hitomi Matsunari Masahito Watanabe Kazuhiro Umeyama Dai Azuma Naomi Uchida Nozomu Sakamoto Tomohiro Makino Shintaro Yagi Kunio Shiota Yutaka Hanazono Hiroshi Nagashima 《Genesis (New York, N.Y. : 2000)》2013,51(11):763-776
Porcine induced pluripotent stem cells (iPSCs) provide useful information for translational research. The quality of iPSCs can be assessed by their ability to differentiate into various cell types after chimera formation. However, analysis of chimera formation in pigs is a labor‐intensive and costly process, necessitating a simple evaluation method for porcine iPSCs. Our previous study identified mouse embryonic stem cell (ESC)‐specific hypomethylated loci (EShypo‐T‐DMRs), and, in this study, 36 genes selected from these were used to evaluate porcine iPSC lines. Based on the methylation profiles of the 36 genes, the iPSC line, Porco Rosso‐4, was found closest to mouse pluripotent stem cells among 5 porcine iPSCs. Moreover, Porco Rosso‐4 more efficiently contributed to the inner cell mass (ICM) of blastocysts than the iPSC line showing the lowest reprogramming of the 36 genes (Porco Rosso‐622‐14), indicating that the DNA methylation profile correlates with efficiency of ICM contribution. Furthermore, factors known to enhance iPSC quality (serum‐free medium with PD0325901 and CHIR99021) improved the methylation status at the 36 genes. Thus, the DNA methylation profile of these 36 genes is a viable index for evaluation of porcine iPSCs. genesis 51:763–776. © 2013 Wiley Periodicals, Inc. 相似文献
107.
Yamaguchi K Feril LB Tachibana K Takahashi A Matsuo M Endo H Harada Y Nakayama J 《Biochemical and biophysical research communications》2011,(1):137-142
We investigated the effects of ultrasound-mediated transfection (sonotransfection) of interferon β (IFN-β) gene on melanoma (C32) both in vitro and in vivo. C32 cells were sonotransfected with IFN-β in vitro. Subcutaneous C32 tumors in mice were sonicated weekly immediately after intra-tumor injection with IFN-β genes mixed with microbubbles. Successful sonotransfection with IFN-β gene in vitro was confirmed by ELISA, which resulted in C32 growth inhibition. In vivo, the growth ratio of tumors transfected with IFN-β gene was significantly lower than the other experimental groups. These results may lead to a new method of treatment against melanoma and other hard-to-treat cancers. 相似文献
108.
Hitomi Katsura 《FEBS letters》2009,583(3):526-3395
Oligomeric structures of the four LOV domains in Arabidopsis phototropin1 (phot1) and 2 (phot2) were studied using crosslinking. Both LOV1 domains of phot1 and phot2 form a dimer independently on the light conditions, suggesting that the LOV1 domain can be a stable dimerization site of phot in vivo. In contrast, phot1-LOV2 is in a monomer-dimer equilibrium and phot2-LOV2 exists as a monomer in the dark. Blue light-induced a slight increase in the monomer population in phot1-LOV2, suggesting a possible blue light-inducible dissociation of dimers. Furthermore, blue light caused a band shift of the phot2-LOV2 monomer. CD spectra revealed the unfolding of helices and the formation of strand structures. Both light-induced changes were reversible in the dark.
Structured summary
MINT-6823377, MINT-6823391:PHOT1 (uniprotkb:O48963) and PHOT1 (uniprotkb: O48963) bind (MI:0407) by cross-linking studies (MI:0030)MINT-6823495, MINT-6823508:PHOT2 (uniprotkb:P93025) and PHOT2 (uniprotkb:P93025) bind (MI:0407) by cross-linking studies (MI:0030) 相似文献109.
Eita Uenishi Tadao Shibasaki Harumi Takahashi Chihiro Seki Hitomi Hamaguchi Takao Yasuda Masao Tatebe Yutaka Oiso Tadaomi Takenawa Susumu Seino 《The Journal of biological chemistry》2013,288(36):25851-25864
Actin dynamics in pancreatic β-cells is involved in insulin secretion. However, the molecular mechanisms of the regulation of actin dynamics by intracellular signals in pancreatic β-cells and its role in phasic insulin secretion are largely unknown. In this study, we elucidate the regulation of actin dynamics by neuronal Wiskott-Aldrich syndrome protein (N-WASP) and cofilin in pancreatic β-cells and demonstrate its role in glucose-induced insulin secretion (GIIS). N-WASP, which promotes actin polymerization through activation of the actin nucleation factor Arp2/3 complex, was found to be activated by glucose stimulation in insulin-secreting clonal pancreatic β-cells (MIN6-K8 β-cells). Introduction of a dominant-negative mutant of N-WASP, which lacks G-actin and Arp2/3 complex-binding region VCA, into MIN6-K8 β-cells or knockdown of N-WASP suppressed GIIS, especially the second phase. We also found that cofilin, which severs F-actin in its dephosphorylated (active) form, is converted to the phosphorylated (inactive) form by glucose stimulation in MIN6-K8 β-cells, thereby promoting F-actin remodeling. In addition, the dominant-negative mutant of cofilin, which inhibits activation of endogenous cofilin, or knockdown of cofilin reduced the second phase of GIIS. However, the first phase of GIIS occurs in the G-actin predominant state, in which cofilin activity predominates over N-WASP activity. Thus, actin dynamics regulated by the balance of N-WASP and cofilin activities determines the biphasic response of GIIS. 相似文献
110.
Kamei N Tobe K Suzuki R Ohsugi M Watanabe T Kubota N Ohtsuka-Kowatari N Kumagai K Sakamoto K Kobayashi M Yamauchi T Ueki K Oishi Y Nishimura S Manabe I Hashimoto H Ohnishi Y Ogata H Tokuyama K Tsunoda M Ide T Murakami K Nagai R Kadowaki T 《The Journal of biological chemistry》2006,281(36):26602-26614
Adipose tissue expression and circulating concentrations of monocyte chemoattractant protein-1 (MCP-1) correlate positively with adiposity. To ascertain the roles of MCP-1 overexpression in adipose, we generated transgenic mice by utilizing the adipocyte P2 (aP2) promoter (aP2-MCP-1 mice). These mice had higher plasma MCP-1 concentrations and increased macrophage accumulation in adipose tissues, as confirmed by immunochemical, flow cytometric, and gene expression analyses. Tumor necrosis factor-alpha and interleukin-6 mRNA levels in white adipose tissue and plasma non-esterified fatty acid levels were increased in transgenic mice. aP2-MCP-1 mice showed insulin resistance, suggesting that inflammatory changes in adipose tissues may be involved in the development of insulin resistance. Insulin resistance in aP2-MCP-1 mice was confirmed by hyperinsulinemic euglycemic clamp studies showing that transgenic mice had lower rates of glucose disappearance and higher endogenous glucose production than wild-type mice. Consistent with this, insulin-induced phosphorylations of Akt were significantly decreased in both skeletal muscles and livers of aP2-MCP-1 mice. MCP-1 pretreatment of isolated skeletal muscle blunted insulin-stimulated glucose uptake, which was partially restored by treatment with the MEK inhibitor U0126, suggesting that circulating MCP-1 may contribute to insulin resistance in aP2-MCP-1 mice. We concluded that both paracrine and endocrine effects of MCP-1 may contribute to the development of insulin resistance in aP2-MCP-1 mice. 相似文献