首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1749篇
  免费   114篇
  2023年   8篇
  2021年   16篇
  2020年   7篇
  2019年   16篇
  2018年   16篇
  2017年   13篇
  2016年   33篇
  2015年   48篇
  2014年   64篇
  2013年   103篇
  2012年   90篇
  2011年   86篇
  2010年   63篇
  2009年   50篇
  2008年   99篇
  2007年   91篇
  2006年   99篇
  2005年   81篇
  2004年   73篇
  2003年   91篇
  2002年   70篇
  2001年   58篇
  2000年   56篇
  1999年   52篇
  1998年   22篇
  1997年   25篇
  1996年   17篇
  1995年   16篇
  1994年   13篇
  1993年   16篇
  1992年   38篇
  1991年   46篇
  1990年   26篇
  1989年   29篇
  1988年   22篇
  1987年   23篇
  1986年   25篇
  1985年   21篇
  1984年   18篇
  1983年   20篇
  1982年   9篇
  1981年   12篇
  1978年   6篇
  1977年   12篇
  1976年   6篇
  1975年   11篇
  1974年   9篇
  1973年   5篇
  1972年   5篇
  1968年   5篇
排序方式: 共有1863条查询结果,搜索用时 296 毫秒
211.
We reported previously that the forced expression of the chemokine BRAK, also called CXCL14 in head and neck squamous cell carcinoma (HNSCC) cells decreased the rate of tumor formation and size of tumor xenografts compared with mock-vector treated cells in athymic nude mice or in severe combined immunodeficiency mice. This suppression occurred even though the growth rates of these cells were the same under in vitro culture conditions, suggesting that a high expression level of the gene in tumor cells is important for the suppression of tumor establishment in vivo. The aim of this study was to determine whether CXCL14/BRAK transgenic mice show resistance to tumor cell xenografts or not. CXCL14/BRAK cDNA was introduced into male C57BL/6 J pronuclei, and 10 founder transgenic mice (Tg) were obtained. Two lines of mice expressed over 10 times higher CXCL14/BRAK protein levels (14 and 11 ng/ml plasma, respectively) than normal blood level (0.9 ng/ml plasma), without apparent abnormality. The sizes of Lewis lung carcinoma and B16 melanoma cell xenografts in Tg mice were significantly smaller than those in control wild-type mice, indicating that CXCL14/BRAK, first found as a suppressor of tumor progression of HNSCC, also suppresses the progression of a carcinoma of other tissue origin. Immunohistochemical studies showed that invasion of blood vessels into tumors was suppressed in tumor xenografts of CXCL14/BRAK Tg mice. These results indicate that CXCL14/BRAK suppressed tumor cell xenografts by functioning paracrine or endocrine fashion and that CXCL14/BRAK is a very promising molecular target for tumor suppression without side effects.  相似文献   
212.
Gloeomonas is a peculiar unicellular volvocalean genus because it lacks pyrenoids in the chloroplasts under the light microscope and has two flagellar bases that are remote from each other. However, ultrastructural features of chloroplasts are very limited, and no molecular phylogenetic analyses have been carried out in Gloeomonas. In this study, we observed ultrastructural features of chloroplasts of three species of Gloeomonas and Chloromonas rubrifilum (Korshikov ex Pascher) Pröschold, B. Marin, U. Schlösser et Melkonian SAG 3.85, and phylogenetic analyses were carried out based on the combined data set from 18S rRNA, ATP synthase beta‐subunit, and P700 chl a–apoprotein A2 gene sequences to deduce the natural phylogenetic positions of the genus Gloeomonas. The present EM demonstrated that the chloroplasts of the three Gloeomonas species and C. rubrifilum SAG 3.85 did not have typical pyrenoids with associated starch grains, but they possessed pyrenoid matrices that protruded interiorly within the stroma regions of the chloroplast. The pyrenoid matrices were large and broad in C. rubrifilum, whereas those of the three Gloeomonas species were recognized in only the small protruded regions of the chloroplast lobes. The present multigene phylogenetic analyses resolved that the three species of Gloeomonas belong to the Chloromonas lineage or Chloromonadinia of the Volvocales, and Chloromonas insignis (Anakhin) Gerloff et H. Ettl NIES‐447 and C. rubrifilum SAG 3.85, both of which have pyrenoids without associated starch grains, were positioned basally to the clade composed of the three species of Gloeomonas. Therefore, Gloeomonas might have evolved from such a Chloromonas species through reduction in pyrenoid matrix size within the chloroplast and by separating their two flagellar bases.  相似文献   
213.
During early apoptosis, adult cardiomyocytes show unusual beating, suggesting possible participation of abnormal Ca(2+) transients in initiation of apoptotic processes in this cell type. Simultaneously with the beating, these cells show dynamic structural alteration resulting from cytoskeletal disintegration that is quite rapid. Because of the specialized structure and extensive cytoskeleton of cardiomyocytes, we hypothesized that its degradation in so short a time would require a particularly efficient mechanism. To better understand this mechanism, we used serial video microscopy to observe beta-adrenergic stimulation-induced apoptosis in isolated adult rat cardiomyocytes while simultaneously recording intracellular Ca(2+) concentration and cell length. Trains of Ca(2+) transients and corresponding rhythmic contractions and relaxations (beating) were observed in apoptotic cells. Frequencies of Ca(2+) transients and beating gradually increased with time and were accompanied by cellular shrinkage. As the cells shrank, amplitudes of Ca(2+) transients declined and diastolic intracellular Ca(2+) concentration increased until the transients were lost. Beating and progression of apoptosis were significantly inhibited by antagonists against the L-type Ca(2+) channel (nifedipine), ryanodine receptor (ryanodine), inositol 1,4,5-trisphosphate receptor (heparin), sarco(endo)plasmic Ca(2+)-ATPase (thapsigargin), and Na(+)/Ca(2+) exchanger (KB-R7943). Electron-microscopic examination of beating cardiomyocytes revealed progressive breakdown of Z disks. Immunohistochemical analysis and Western blot confirmed that disappearance of Z disk constituent proteins (alpha-actinin, desmin, and tropomyosin) preceded degradation of other cytoskeletal proteins. It thus appears that, in adult cardiomyocyte apoptosis, Ca(2+) transients mediate apoptotic beating and efficient sarcomere destruction initiated by Z disk breakdown.  相似文献   
214.
The gene for a novel glucanotransferase, isocyclomaltooligosaccharide glucanotransferase (IgtY), involved in the synthesis of a cyclomaltopentaose cyclized by an alpha-1,6-linkage [ICG5; cyclo-{-->6)-alpha-D-Glcp-(1-->4)-alpha-D-Glcp-(1-->4)-alpha-D-Glcp-(1-->4)-alpha-D-Glcp-(1-->4)-alpha-D-Glcp-(1-->}] from starch, was cloned from the genome of B. circulans AM7. The IgtY gene, designated igtY, consisted of 2,985 bp encoding a signal peptide of 35 amino acids and a mature protein of 960 amino acids with a calculated molecular mass of 102,071 Da. The deduced amino-acid sequence showed similarities to 6-alpha-maltosyltransferase, alpha-amylase, and cyclomaltodextrin glucanotransferase. The four conserved regions common in the alpha-amylase family enzymes were also found in this enzyme, indicating that this enzyme should be assigned to this family. The DNA sequence of 8,325-bp analyzed in this study contained two open reading frames (ORFs) downstream of igtY. The first ORF, designated igtZ, formed a gene cluster, igtYZ. The amino-acid sequence deduced from igtZ exhibited no similarity to any proteins with known or unknown functions. IgtZ was expressed in Escherichia coli, and the enzyme was purified. The enzyme acted on maltooligosaccharides that have a degree of polymerization (DP) of 4 or more, amylose, and soluble starch to produce glucose and maltooligosaccharides up to DP5 by a hydrolysis reaction. The enzyme (IgtZ), which has a novel amino-acid sequence, should be assigned to alpha-amylase. It is notable that both IgtY and IgtZ have a tandem sequence similar to a carbohydrate-binding module belonging to a family 25. These two enzymes jointly acted on raw starch, and efficiently generated ICG5.  相似文献   
215.
In the course of studying [PSI(+)], a yeast prion, we found inadvertently that Escherichia coli strain BL21 overproducing a fusion protein, in which the prion-domain of Sup35 was connected to the C terminus of glutathione S-transferase, grew normally to the stationary phase and rapidly decreased in colony-forming ability thereafter. Evidence indicated that protein polymers consisting mainly of the fusion protein GST-Sup35NM (about 70% of the mass) and its N-terminal fragments were formed in extract prepared from the cells producing GST-Sup35NM. It was further found that cells of strain BL21 accumulated the protein polymers during prolonged cultivation. Based on these results, we contend that the initially observed defect in colony forming ability is the direct or indirect consequence of intracellular formation and accumulation of the protein polymers.  相似文献   
216.
EGL3 and RCE1 are glycoside hydrolase family 45 endoglucanases isolated from Humicola grisea and Rhizopus oryzae respectively. The amino acid sequences of the two endoglucanases are homologous; on the other hand, the optimum temperature of EGL3 is higher than that of RCE1. In this study, four chimeric endoglucanases, named ER1, ER2, ER3 and ER4, in which one of four sequential amino acid regions of the EGL3 catalytic domain (CAD) was replaced by the corresponding RCE1 amino acids, were constructed to explore the region responsible for the EGL3 temperature profile. Then their temperature profiles were compared with that of the recombinant EGL3. Replacement of the N-terminal region of EGL3 with that of RCE1 caused the EGL3 temperature profile to shift to a lower temperature. These results suggest that the N-terminal amino acids of the EGL3 are responsible for the EGL3 temperature profile.  相似文献   
217.
In the detergent industry, fungal endoglucanases are used to release microfibrils from the surfaces of dyed cellulosic fabrics to enhance color brightness. Family 45 endoglucanase (glycoside hydrolase family 45, GH45) EGL3 from Humicola grisea is more resistant to anionic surfactants and oxidizing agents than family 45 endoglucanase RCE1 from Rhizopus oryzae, while in the present study, a catalytic domain of RCE1 had higher defibrillation activity on dyed cotton fabrics than did that of EGL3. To identify the amino acid regions involved in these properties, we compared the characteristics of RCE1, EGL3, and three chimeric endoglucanases, in which each of the three regions of the catalytic domain of EGL3 was replaced by the corresponding region of the catalytic domain of RCE1. Amino acids in the N-terminal region were involved in resistance to anionic surfactants and oxidizing agents. Furthermore, amino acids in the region adjacent to the N-terminal region were involved in releasing microfibrils and in binding to dyed cotton fabrics, indicating that the binding of the amino acids in this region might be important in the release of microfibrils from dyed cotton fabrics.  相似文献   
218.
Adipose tissue expression and circulating concentrations of monocyte chemoattractant protein-1 (MCP-1) correlate positively with adiposity. To ascertain the roles of MCP-1 overexpression in adipose, we generated transgenic mice by utilizing the adipocyte P2 (aP2) promoter (aP2-MCP-1 mice). These mice had higher plasma MCP-1 concentrations and increased macrophage accumulation in adipose tissues, as confirmed by immunochemical, flow cytometric, and gene expression analyses. Tumor necrosis factor-alpha and interleukin-6 mRNA levels in white adipose tissue and plasma non-esterified fatty acid levels were increased in transgenic mice. aP2-MCP-1 mice showed insulin resistance, suggesting that inflammatory changes in adipose tissues may be involved in the development of insulin resistance. Insulin resistance in aP2-MCP-1 mice was confirmed by hyperinsulinemic euglycemic clamp studies showing that transgenic mice had lower rates of glucose disappearance and higher endogenous glucose production than wild-type mice. Consistent with this, insulin-induced phosphorylations of Akt were significantly decreased in both skeletal muscles and livers of aP2-MCP-1 mice. MCP-1 pretreatment of isolated skeletal muscle blunted insulin-stimulated glucose uptake, which was partially restored by treatment with the MEK inhibitor U0126, suggesting that circulating MCP-1 may contribute to insulin resistance in aP2-MCP-1 mice. We concluded that both paracrine and endocrine effects of MCP-1 may contribute to the development of insulin resistance in aP2-MCP-1 mice.  相似文献   
219.
We have previously shown that DNA polymerase epsilon (Pol epsilon)of Saccharomyces cerevisiae binds stably to double-stranded DNA (dsDNA), a property not generally associated with DNA polymerases. Here, by reconstituting Pol epsilon activity from Pol2p-Dpb2p and Dpb3p-Dpb4p, its two component subassemblies, we report that Dpb3p-Dpb4p, a heterodimer of histone-fold motif-containing subunits, is responsible for the dsDNA binding. Substitution of specific lysine residues in Dpb3p, highlighted by homology modeling of Dpb3p-Dpb4p based on the structure of the histone H2A-H2B dimer, indicated that they play roles in binding of dsDNA by Dpb3p-Dpb4p, in a manner similar to the histone-DNA interaction. The lysine-substituted dpb3 mutants also displayed reduced telomeric silencing, whose degree paralleled that of the dsDNA-binding activity of Pol epsilon in the corresponding dpb3 mutants. Furthermore, additional amino acid substitutions to lysines in Dpb4p, to compensate for the loss of positive charges in the Dpb3p mutants, resulted in simultaneous restoration of dsDNA-binding activity by Pol epsilon and telomeric silencing. We conclude that the dsDNA-binding property of Pol epsilon is required for epigenetic silencing at telomeres.  相似文献   
220.
We have established a novel TCRalphabeta (TCRVbeta6)(+)CD4(-)CD8(-) T cell hybridoma designated B6HO3. When the B6HO3 cells were cocultured with bacterial-infected J774 macrophage-like cells, IFN-gamma production by B6HO3 cells was triggered through direct cell-cell contact with dying J774 cells infected with Listeria monocytogenes (LM), Shigella flexneri, or Salmonella typhimurium that expressed the type III secretion system, but not with intact J774 cells infected with heat-killed LM, nonhemolytic lysteriolysin O-deficient (Hly(-)) LM, plasmid-cured Shigella, or stationary-phase Salmonella. However, the triggering of B6HO3 cells for IFN-gamma production involved neither dying hepatoma cells infected with LM nor dying J774 cells caused by gliotoxin treatment or freeze thawing. Cycloheximide and Abs to H-2K(d), H-2D(d), Ia(d), CD1d, TCRVbeta6, and IL-12 did not inhibit the contact-dependent IFN-gamma response, indicating that this IFN-gamma response did not require de novo protein synthesis in bacterial-infected J774 cells and was TCR and IL-12 independent. Thus, in an as yet undefined way, B6HO3 hybridoma recognizes a specialized form of macrophage cell death resulting from bacterial infection and consequently produces IFN-gamma. Moreover, contact-dependent interaction of minor subsets of splenic alphabeta T cells, including NKT cells with dying LM-infected J774 and bone marrow-derived macrophage (BMM) cells, proved to provide an IFN-gamma-productive stimulus for these minor T cell populations, to which the parental T cell of the B6HO3 hybridoma appeared to belong. Unexpectedly, subsets of gammadelta T and NK cells similarly responded to dying LM-infected macrophage cells. These results propose that innate lymphocytes may possess a recognition system sensing macrophage cell "danger" resulting from bacterial infection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号