首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   759篇
  免费   53篇
  2023年   3篇
  2022年   3篇
  2021年   10篇
  2020年   5篇
  2019年   5篇
  2018年   7篇
  2017年   7篇
  2016年   12篇
  2015年   19篇
  2014年   21篇
  2013年   44篇
  2012年   43篇
  2011年   39篇
  2010年   18篇
  2009年   25篇
  2008年   37篇
  2007年   44篇
  2006年   43篇
  2005年   39篇
  2004年   65篇
  2003年   44篇
  2002年   46篇
  2001年   30篇
  2000年   10篇
  1999年   21篇
  1998年   13篇
  1997年   9篇
  1996年   8篇
  1995年   8篇
  1994年   10篇
  1993年   3篇
  1992年   7篇
  1991年   14篇
  1990年   11篇
  1989年   11篇
  1988年   15篇
  1987年   8篇
  1986年   9篇
  1985年   6篇
  1984年   8篇
  1983年   3篇
  1982年   5篇
  1981年   2篇
  1980年   2篇
  1978年   3篇
  1977年   3篇
  1975年   3篇
  1974年   2篇
  1972年   2篇
  1968年   2篇
排序方式: 共有812条查询结果,搜索用时 62 毫秒
51.
52.
BACKGROUND: Pancreatoblastoma (PBL) is a rare neoplasm that generally occurs in the pediatric age group and shows unique histopathology, including squamoid corpuscles that may contain tumor cells with optically clear nuclei (OCN) rich in biotin. In the English-language literature there have been two reports on the cytology of PBL, but neither of them refers to the cytologic features of squamoid corpuscles. CASE: A 3-year-old boy with nausea and general fatigue was referred to our center. Imaging studies showed an approximately 7.5-cm, left-sided abdominal mass and multiple metastases in the lung. The abdominal mass was biopsied, and its histology showed solid cellular nests with occasional acinar differentiation and squamoid corpuscles. Imprint cytology of the biopsied sample displayed cellular epithelial nests with focal acinar structures and foci composed of larger cells with a low nuclear/cytoplasmic ratio. These foci contained a few tumor cells with biotin-rich OCN and were determined to be squamoid corpuscles. CONCLUSION: Detection of occasional squamoid corpuscles with biotin-rich OCN can be useful in making a diagnosis of PBL on cytologic samples.  相似文献   
53.
Natriuretic peptides (NPs) and their receptors have been identified in vertebrate species ranging from elasmobranchs to mammals. Atrial, brain and ventricular NP (ANP, BNP and VNP) are endocrine hormones secreted from the heart, while C-type NP (CNP) is principally a paracrine factor in the brain and periphery. In elasmobranchs, only CNP is present in the heart and brain and it functions as a circulating hormone as well as a paracrine factor. Four types of NP receptors are cloned in vertebrates. NPR-A and NPR-B are guanylyl cyclase-coupled receptors, whereas NPR-C and NPR-D have only a short cytoplasmic domain. NPs are hormones important for volume regulation in mammals, while they act more specifically for Na(+) regulation in fishes. The presence of NP and its receptor has also been suggested in the most primitive vertebrate group, cyclostomes, and its molecular identification is in progress. The presence of ANP or its mRNA has been reported in the hearts and ganglia of various invertebrate species such as mollusks and arthropods using either antisera raised against mammalian ANP or rat ANP cDNA as probes. Immunoreactive ANP has also been detected in the unicellular Paramecium and in various species of plants including Metasequoia. Furthermore, the N-terminal prosegments of ANP, whose sequences are scarcely conserved even in vertebrates, have also been detected by the radioimmunoassay for human ANP prosegments in all invertebrate and plant species examined including Paramecium. Although these data are highly attractive, the current evidence is too circumstantial to be convincing that the immunoreactivity truly originates from ANP and its prosegments in such diverse organisms. The caution that has to be exercised in identification of vertebrate hormones from phylogenetically distant organisms is discussed.  相似文献   
54.
5-hydroxytryptamine (5-HT) is a precursor and a putative modulator for melatonin synthesis in mammalian pinealocytes. 5-HT is present in organelles distinct from l-glutamate-containing synaptic-like microvesicles as well as in the cytoplasm of pinealocytes, and is secreted upon stimulation by norepinephrine (NE) to enhance serotonin N-acetyltransferase activity via the 5-HT2 receptor. However, the mechanism underlying the secretion of 5-HT from pinealocytes is unknown. In this study, we show that NE-evoked release of 5-HT is largely dependent on Ca2+ in rat pinealocytes in culture. Omission of Ca2+ from the medium and incubation of pineal cells with EGTA-tetraacetoxymethyl-ester inhibited by 59 and 97% the NE-evoked 5-HT release, respectively. Phenylephrine also triggered the Ca2+-dependent release of 5-HT, which was blocked by phentolamine, an alpha antagonist, but not by propranolol, a beta antagonist. Botulinum neurotoxin type E cleaved 25 kDa synaptosomal-associated protein and inhibited by 50% of the NE-evoked 5-HT release. Bafilomycin A1, an inhibitor of vacuolar H+-ATPase, and reserpine and tetrabenazine, inhibitors of vesicular monoamine transporter, all decreased the storage of vesicular 5-HT followed by inhibition of the NE-evoked 5-HT release. Agents that trigger L-glutamte exocytosis such as acetylcholine did not trigger any Ca2+-dependent 5-HT release. Vice versa neither NE nor phenylephrine caused synaptic-like microvesicle-mediated l-glutamate exocytosis. These results indicated that upon stimulation of a adrenoceptors pinealocytes secrete 5-HT through a Ca2+-dependent exocytotic mechanism, which is distinct from the exocytosis of synaptic-like microvesicles.  相似文献   
55.
56.
A genetic screen for mutations synthetically lethal with fission yeast calcineurin deletion led to the identification of Ypt3, a homolog of mammalian Rab11 GTP-binding protein. A mutant with the temperature-sensitive ypt3-i5 allele showed pleiotropic phenotypes such as defects in cytokinesis, cell wall integrity, and vacuole fusion, and these were exacerbated by FK506-treatment, a specific inhibitor of calcineurin. Green fluorescent protein (GFP)-tagged Ypt3 showed cytoplasmic staining that was concentrated at growth sites, and this polarized localization required the actin cytoskeleton. It was also detected as a punctate staining in an actin-independent manner. Electron microscopy revealed that ypt3-i5 mutants accumulated aberrant Golgi-like structures and putative post-Golgi vesicles, which increased remarkably at the restrictive temperature. Consistently, the secretion of GFP fused with the pho1(+) leader peptide (SPL-GFP) was abolished at the restrictive temperature in ypt3-i5 mutants. FK506-treatment accentuated the accumulation of aberrant Golgi-like structures and caused a significant decrease of SPL-GFP secretion at a permissive temperature. These results suggest that Ypt3 is required at multiple steps of the exocytic pathway and its mutation affects diverse cellular processes and that calcineurin is functionally connected to these cellular processes.  相似文献   
57.
SUMOs are small ubiquitin-related polypeptides that are reversibly conjugated to many nuclear proteins. Although the number of identified substrates has grown rapidly, relatively little is still understood about when, where, and why most proteins are modified by SUMO. Here, we demonstrate that enzymes involved in the SUMO modification and demodification of proteins are components of the nuclear pore complex (NPC). We show that SENP2, a SUMO protease that is able to demodify both SUMO-1 and SUMO-2 or SUMO-3 protein conjugates, localizes to the nucleoplasmic face of the NPC. The unique amino-terminal domain of SENP2 interacts with the FG repeat domain of Nup153, indicating that SENP2 associates with the nucleoplasmic basket of the NPC. We also investigated the localization of the SUMO conjugating enzyme, Ubc9. Using immunogold labeling of isolated nuclear envelopes, we found that Ubc9 localizes to both the cytoplasmic and the nucleoplasmic filaments of the NPC. In vitro binding studies revealed that Ubc9 and SUMO-1-modified RanGAP1 bind synergistically to form a trimeric complex with a component of the cytoplasmic filaments of the NPC, Nup358. Our results indicate that both SUMO modification and demodification of proteins may occur at the NPC and suggest a connection between the SUMO modification pathway and nucleocytoplasmic transport.  相似文献   
58.
We have identified three members of the AGAP subfamily of ASAP family ADP-ribosylation factor GTPase-activating proteins (Arf GAPs). In addition to the Arf GAP domain, these proteins contain GTP-binding protein-like, ankyrin repeat and pleckstrin homology domains. Here, we have characterized the ubiquitously expressed AGAP1/KIAA1099. AGAP1 had Arf GAP activity toward Arf1>Arf5>Arf6. Phosphatidylinositol 4,5-bisphosphate and phosphatidic acid synergistically stimulated GAP activity. As found for other ASAP family Arf GAPs, the pleckstrin homology domain was necessary for activity. Deletion of the GTP-binding protein-like domain affected lipid dependence of Arf GAP activity. In vivo effects of AGAP1 were distinct from other ASAP family Arf GAPs. Overexpressed AGAP1 induced the formation of and was associated with punctate structures containing the endocytic markers transferrin and Rab4. AP1 was redistributed from the trans-Golgi to the punctate structures. Like other ASAP family members, AGAP1 overexpression inhibited the formation of PDGF-induced ruffles. However, distinct from other ASAP family members, AGAP1 also induced the loss of actin stress fibers. Thus, AGAP1 is a phosphoinositide-dependent Arf GAP that impacts both the endocytic compartment and actin.  相似文献   
59.
Microtubule-associated protein 2 (MAP2) is a major component of cross-bridges between microtubules in dendrites, and is known to stabilize microtubules. MAP2 also has a binding domain for the regulatory subunit II of cAMP-dependent protein kinase (PKA). We found that there is reduction in microtubule density in dendrites and a reduction of dendritic length in MAP2-deficient mice. Moreover, there is a significant reduction of various subunits of PKA in dendrites and total amounts of various PKA subunits in hippocampal tissue and cultured neurons. In MAP2-deficient cultured neurons, the induction rate of phosphorylated CREB after forskolin stimulation was much lower than in wild-type neurons. Therefore, MAP2 is an anchoring protein of PKA in dendrites, whose loss leads to reduced amount of dendritic and total PKA and reduced activation of CREB.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号