首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   759篇
  免费   53篇
  2023年   3篇
  2022年   3篇
  2021年   10篇
  2020年   5篇
  2019年   5篇
  2018年   7篇
  2017年   7篇
  2016年   12篇
  2015年   19篇
  2014年   21篇
  2013年   44篇
  2012年   43篇
  2011年   39篇
  2010年   18篇
  2009年   25篇
  2008年   37篇
  2007年   44篇
  2006年   43篇
  2005年   39篇
  2004年   65篇
  2003年   44篇
  2002年   46篇
  2001年   30篇
  2000年   10篇
  1999年   21篇
  1998年   13篇
  1997年   9篇
  1996年   8篇
  1995年   8篇
  1994年   10篇
  1993年   3篇
  1992年   7篇
  1991年   14篇
  1990年   11篇
  1989年   11篇
  1988年   15篇
  1987年   8篇
  1986年   9篇
  1985年   6篇
  1984年   8篇
  1983年   3篇
  1982年   5篇
  1981年   2篇
  1980年   2篇
  1978年   3篇
  1977年   3篇
  1975年   3篇
  1974年   2篇
  1972年   2篇
  1968年   2篇
排序方式: 共有812条查询结果,搜索用时 14 毫秒
121.
Epimerization of aldoses at C-2 has been extensively investigated by using various metal ions in conjunction with diamines, monoamines, and aminoalcohols. Aldoses are epimerized at C-2 by a combination of alkaline-earth or rare-earth metal ions (Ca(2+), Sr(2+), Pr(3+), or Ce(3+)) and such monoamines as triethylamine. In particular, the Ca(2+)-triethylamine system proved effective in promoting aldose-ketose isomerization as well as C-2 epimerization of aldoses. 13C NMR studies using D-(1-(13)C)glucose and D-(1-(13)C)galactose with the CaCl(2) system in CD(3)OD revealed that the C-2 epimerization proceeds via stereospecific rearrangement of the carbon skeleton, or 1,2-carbon shift, and ketose formation proceeds partially through an intramolecular hydrogen migration or 1,2-hydride shift and, in part, via an enediol intermediate. These simultaneous aldose-aldose and aldose-ketose isomerizations showed interesting substrate-dependent chemoselectivity. Whereas the mannose-type aldoses having 2,3-erythro configuration (D-mannose, D-lyxose, and D-ribose) showed considerable resistance to both the C-2 epimerization and the aldose-ketose isomerization, the glucose-type sugars having 2,3-threo and 3,4-threo configurations, D-glucose and D-xylose, are mainly epimerized at C-2 and those having the 2,3-threo and 3,4-erythro configurations, D-galactose and D-arabinose, were mostly isomerized into 2-ketoses. These features are of potential interest in relevance to biomimic sugar transformations by metal ions.  相似文献   
122.
123.
Activation of calpains by calcium flux leading to talin cleavage is thought to be an important process of LFA-1 activation by inside-out signalling. Here, we tested the effects of the calcium ionophore ionomycin and calpain inhibitor calpeptin on LFA-1-mediated adhesion of a T cell hybridoma line, cytotoxic T cells and primary resting T cells. Ionomycin activated LFA-1-mediated adhesion of all three types of T cells, and calpeptin inhibited the effects of ionomycin. However, calpeptin also inhibited activation of LFA-1 by PMA, which did not induce calcium flux. Cleavage of talin was undetectable in ionomycin-treated T cells. Furthermore, treatment with ionomycin and calpeptin induced apoptosis of T cells. Inhibitors of phosphatidyl Inositol-3 kinase inhibited activation of LFA-1 by ionomycin, but not by PMA, whereas the protein kinase C inhibitor inhibited the effects of PMA, but not ionomycin. Thus, activation of LFA-1 by ionomycin is independent of calpain-mediated talin cleavage.  相似文献   
124.
In the course of screening of potential leads for beta2-receptor agonists, we found a novel beta2-adrenoceptor selective agonist, S1319, from a marine sponge Dysidea sp. The active compound was isolated and structurally characterized as 4-hydroxy-7-[1-(1-hydroxy-2-methylamino)ethyl]-1,3-benzothiazole-2(3H)-o ne, a new member of the beta2-adrenoceptor agonist. This is the first example of a sponge-derived beta2-adrenoceptor agonist.  相似文献   
125.
126.
SOX proteins bind similar DNA motifs through their high-mobility-group (HMG) domains, but their action is highly specific with respect to target genes and cell type. We investigated the mechanism of target selection by comparing SOX1/2/3, which activate δ-crystallin minimal enhancer DC5, with SOX9, which activates Col2a1 minimal enhancer COL2C2. These enhancers depend on both the SOX binding site and the binding site of a putative partner factor. The DC5 site was equally bound and bent by the HMG domains of SOX1/2 and SOX9. The activation domains of these SOX proteins mapped at the distal portions of the C-terminal domains were not cell specific and were independent of the partner factor. Chimeric proteins produced between SOX1 and SOX9 showed that to activate the DC5 enhancer, the C-terminal domain must be that of SOX1, although the HMG domains were replaceable. The SOX2-VP16 fusion protein, in which the activation domain of SOX2 was replaced by that of VP16, activated the DC5 enhancer still in a partner factor-dependent manner. The results argue that the proximal portion of the C-terminal domain of SOX1/2 specifically interacts with the partner factor, and this interaction determines the specificity of the SOX1/2 action. Essentially the same results were obtained in the converse experiments in which COL2C2 activation by SOX9 was analyzed, except that specificity of SOX9-partner factor interaction also involved the SOX9 HMG domain. The highly selective SOX-partner factor interactions presumably stabilize the DNA binding of the SOX proteins and provide the mechanism for regulatory target selection.  相似文献   
127.
The renin-angiotensin system (RAS) has been identified recently in elasmobranch fish, and the structure of angiotensin II (ANG II) is unusual ([Asp(1),Pro(3),Ile(5)]-ANG II) compared to other vertebrates. Receptors for ANG II have been identified in blood vessels and in a variety of osmoregulatory tissues including the gill, kidney and rectal gland. In addition, there is considerable binding to the interrenal gland and the stimulation of 1alpha-hydroxycorticosterone production in vitro suggests a physiological role in corticosteroidogenesis. ANG II is a potent vasoconstrictor and this effect does not appear to be mediated by sympathetic activation or catecholamine release. Although the RAS may not be involved in maintaining basal blood pressure, it may be important in situations in which blood pressure is reduced. Understanding of the role of ANG II as an osmoregulatory hormone is only just emerging with putative roles in the control of gill, rectal gland and perhaps, drinking. In addition, the stimulation of corticosteroid secretion may provide another means of controlling osmoregulation. J. Exp. Zool. 284:526-534, 1999.  相似文献   
128.
129.
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号