首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2370篇
  免费   134篇
  国内免费   3篇
  2023年   4篇
  2022年   13篇
  2021年   23篇
  2020年   14篇
  2019年   20篇
  2018年   27篇
  2017年   33篇
  2016年   53篇
  2015年   70篇
  2014年   79篇
  2013年   127篇
  2012年   134篇
  2011年   166篇
  2010年   89篇
  2009年   123篇
  2008年   164篇
  2007年   144篇
  2006年   142篇
  2005年   153篇
  2004年   139篇
  2003年   149篇
  2002年   154篇
  2001年   44篇
  2000年   50篇
  1999年   36篇
  1998年   26篇
  1997年   25篇
  1996年   26篇
  1995年   22篇
  1994年   21篇
  1993年   13篇
  1992年   21篇
  1991年   18篇
  1990年   23篇
  1989年   20篇
  1988年   18篇
  1987年   11篇
  1986年   10篇
  1985年   10篇
  1984年   15篇
  1983年   10篇
  1982年   8篇
  1981年   5篇
  1980年   5篇
  1979年   5篇
  1978年   7篇
  1975年   4篇
  1974年   10篇
  1973年   6篇
  1968年   3篇
排序方式: 共有2507条查询结果,搜索用时 31 毫秒
261.
The suppressive effects on acute alcoholic liver injury of S-adenosylmethionine (SAM) and the sake yeast, Saccharomyces cerevisiae Kyokai No. 9, have been shown previously. To enhance the suppression of acute alcoholic liver injury by sake yeast, we prepared SAM-accumulating sake yeast (SAM yeast). Male C57BL/6 mice that had been fed on a diet containing 0.25% SAM yeast or sake yeast for two weeks received three doses of ethanol (5 g/kg BW). In the mice fed on the SAM yeast, the ethanol-induced increases in both triglyceride (TG) and alanine aminotransferase (ALT) were significantly repressed. In addition, the SAM yeast-fed mice did not show an ethanol-induced decrease in hepatic SAM level, suggesting that a disorder of methionine metabolism in the liver caused by ethanol was relieved by the SAM yeast. These results suggest that the SAM yeast had a stronger effect suppressing acute alcoholic liver injury in mice than the sake yeast.  相似文献   
262.
L-Pipecolic acid is a chiral pharmaceutical intermediate. An enzymatic system for the synthesis of L-pipecolic acid from L-lysine by commercial L-lysine alpha-oxidase from Trichoderma viride and an extract of recombinant Escherichia coli cells coexpressing Delta1-piperideine-2-carboxylate reductase from Pseudomonas putida and glucose dehydrogenase from Bacillus subtilis is described. A laboratory-scale process provided 27 g/l of L-pipecolic acid in 99.7% e.e.  相似文献   
263.
264.
The mouse embryonal carcinoma cell line ATDC5 provides an excellent model system for chondrogenesis in vitro. To understand better the molecular mechanisms of endochondral bone formation, we investigated gene expression profiles during the differentiation course of ATDC5 cells, using an in-house microarray harboring full-length-enriched cDNAs. For 28 days following chondrogenic induction, 507 genes were up- or down-regulated at least 1.5-fold. These genes were classified into five clusters based on their expression patterns. Genes for growth factor and cytokine pathways were significantly enriched in the cluster characterized by increases in expression during late stages of chondrocyte differentiation. mRNAs for decorin and osteoglycin, which have been shown to bind to transforming growth factors-beta and bone morphogenetic proteins, respectively, were found in this cluster and were detected in hypertrophic chondrocytes of developing mouse bones by in situ hybridization analysis. Taken together with assigned functions of individual genes in the cluster, interdigitated interaction between a number of intercellular signaling molecules is likely to take place in the late chondrogenic stage for autocrine and paracrine regulation among chondrocytes, as well as for chemoattraction and stimulation of progenitor cells of other lineages.  相似文献   
265.
266.
Adipose tissue expression and circulating concentrations of monocyte chemoattractant protein-1 (MCP-1) correlate positively with adiposity. To ascertain the roles of MCP-1 overexpression in adipose, we generated transgenic mice by utilizing the adipocyte P2 (aP2) promoter (aP2-MCP-1 mice). These mice had higher plasma MCP-1 concentrations and increased macrophage accumulation in adipose tissues, as confirmed by immunochemical, flow cytometric, and gene expression analyses. Tumor necrosis factor-alpha and interleukin-6 mRNA levels in white adipose tissue and plasma non-esterified fatty acid levels were increased in transgenic mice. aP2-MCP-1 mice showed insulin resistance, suggesting that inflammatory changes in adipose tissues may be involved in the development of insulin resistance. Insulin resistance in aP2-MCP-1 mice was confirmed by hyperinsulinemic euglycemic clamp studies showing that transgenic mice had lower rates of glucose disappearance and higher endogenous glucose production than wild-type mice. Consistent with this, insulin-induced phosphorylations of Akt were significantly decreased in both skeletal muscles and livers of aP2-MCP-1 mice. MCP-1 pretreatment of isolated skeletal muscle blunted insulin-stimulated glucose uptake, which was partially restored by treatment with the MEK inhibitor U0126, suggesting that circulating MCP-1 may contribute to insulin resistance in aP2-MCP-1 mice. We concluded that both paracrine and endocrine effects of MCP-1 may contribute to the development of insulin resistance in aP2-MCP-1 mice.  相似文献   
267.
The male-killing spiroplasma strain NSRO causes an extremely female-biased sex ratio of the host, Drosophila melanogaster, as a result of selective death of male offspring during embryogenesis. The spiroplasma strain NSRO-A, a variant of NSRO, does not cause such symptoms. In an attempt to gain insights into the mechanism underlying the symbiont-induced reproductive phenotype, infection densities of the spiroplasmas in different tissues were monitored during host aging using a quantitative PCR technique. The density dynamics in the hemolymph were reminiscent of those in the whole body, whereas the density dynamics in the fat body, intestine and ovary were not. These results suggest that the majority of the spiroplasmas colonize and proliferate in the hemolymph of the host. In the hemolymph and whole body, the infection densities of NSRO were generally higher than those of NSRO-A, which may be related to the different reproductive phenotypes caused by the spiroplasmas.  相似文献   
268.
CD97, an epidermal growth factor (EGF)-TM7 receptor, is not restricted to hematopoetic and carcinoma cells but is also found on smooth muscle cells (SMC). We have examined its location and biochemical structure in various normal and tumorigenic SMC-containing tissues. SMC of the urinary bladder, lung bronchi and bronchioles, myometrium, and gastrointestinal tract were immunohistologically stained by using monoclonal antibodies (mabs) to the CD97 stalk region (CD97stalk). Mabs directed against an N-glycosylation-dependent epitope within the EGF-domains (CD97EGF) did not bind to normal SMC. Vascular SMC, which was also CD97EGF-negative, showed further CD97 heterogeneity. Only a few, if any, SMC from the aorta or elastic arteries of the systemic circulation were positive for CD97 mRNA and therefore also for CD97stalk. CD97stalk-positive SMC were slightly more numerous in muscular and peripheral arteries. In contrast, most venous SMC expressed CD97stalk. A comparison with other SMC molecules revealed a similar but not identical staining pattern for CD97stalk and desmin. Further CD97 heterogeneity was observed during SMC transformation. All leiomyomas (n=5) and nine out of 21 leiomyosarcomas were positive for both CD97stalk and CD97EGF. As expected, CD97EGF-positive SMC tumors expressed partly N-glycosylated CD97. Seven out of 21 leiomyosarcomas were completely devoid of CD97. Thus, CD97 showed variable expression in vascular and biochemical modification in tumorigenic SMC, suggesting that the function of the molecule is specific for the SMC subtype. This study was supported by a joint grant from the German Research Council (DFG; project AU 132/3-1) and by the Interdisziplinary Center of Clinical Research (IZKF) Leipzig at the Faculty of Medicine, University of Leipzig (project D6). E. Wandel is a fellow of the IZKF.  相似文献   
269.
Anthranilate synthase (AS) is a key enzyme in tryptophan (Trp) biosynthesis. Metabolic changes in transgenic Arabidopsis plants expressing the feedback-resistant anthranilate synthase alpha subunit gene OASA1D were investigated with respect to Trp synthesis and effects on secondary metabolism. The Trp content varied depending on the transgenic line, with some lines showing an approximately 200-fold increase. The levels of AS activity in crude extracts from the transgenic lines were comparable to those in the wild type. On the other hand, the enzyme prepared from the lines accumulating high levels of Trp showed a relaxed feedback sensitivity. The AS activity, determined in the presence of 50 microM L-Trp, correlated well with the amount of free Trp in the transgenic lines, indicating the important role of feedback inhibition in control of Trp pool size. In Arabidopsis, Trp is a precursor of multiple secondary metabolites, including indole glucosinolates and camalexin. The amount of indol-3-ylmethyl glucosinolate (I3 M) in rosette leaves of the high-Trp accumulating lines was 1.5- to 2.1-fold greater than that in wild type. The treatment of the leaves with jasmonic acid resulted in a more pronounced accumulation of I3 M in the high-Trp accumulating lines than in wild type. The induction of camalexin formation after the inoculation of Alternaria brassicicola was not affected by the accumulation of a large amount of Trp. The accumulation of constitutive phenylpropanoids and flavonoids was suppressed in high-Trp accumulating lines, while the amounts of Phe and Tyr increased, thereby indicating an interaction between the Trp branch and the Phe and Tyr branch in the shikimate pathway.  相似文献   
270.
Male-killing phenotypes are found in a variety of insects and are often associated with maternally inherited endosymbiotic bacteria. In several species of Drosophila, male-killing endosymbionts of the genus Spiroplasma have been found at low frequencies (0.1 to 3%). In this study, spiroplasma infection without causing male-killing was shown to be prevalent (23 to 66%) in Japanese populations of Drosophila hydei. Molecular phylogenetic analyses showed that D. hydei was infected with a single strain of spiroplasma, which was closely related to male-killing spiroplasmas from other Drosophila species. Artificial-transfer experiments suggested that the spiroplasma genotype rather than the host genotype was responsible for the absence of the male-killing phenotype. Infection densities of the spiroplasma in the natural host, D. hydei, and in the artificial host, Drosophila melanogaster, were significantly lower than those of the male-killing spiroplasma NSRO, which was in accordance with the hypothesis that a threshold infection density is needed for the spiroplasma-induced male-killing expression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号