首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2611篇
  免费   175篇
  国内免费   3篇
  2789篇
  2023年   4篇
  2022年   15篇
  2021年   35篇
  2020年   18篇
  2019年   23篇
  2018年   24篇
  2017年   41篇
  2016年   55篇
  2015年   80篇
  2014年   89篇
  2013年   128篇
  2012年   144篇
  2011年   182篇
  2010年   96篇
  2009年   127篇
  2008年   176篇
  2007年   166篇
  2006年   157篇
  2005年   180篇
  2004年   129篇
  2003年   157篇
  2002年   150篇
  2001年   54篇
  2000年   56篇
  1999年   46篇
  1998年   30篇
  1997年   26篇
  1996年   33篇
  1995年   21篇
  1994年   23篇
  1993年   14篇
  1992年   26篇
  1991年   19篇
  1990年   26篇
  1989年   41篇
  1988年   26篇
  1987年   17篇
  1986年   19篇
  1985年   13篇
  1984年   21篇
  1983年   9篇
  1982年   8篇
  1981年   7篇
  1980年   6篇
  1979年   10篇
  1978年   13篇
  1977年   6篇
  1976年   10篇
  1974年   10篇
  1973年   8篇
排序方式: 共有2789条查询结果,搜索用时 15 毫秒
71.
Hepcidin is a key iron-regulatory hormone, the production of which is controlled by iron stores, inflammation, hypoxia and erythropoiesis. The regulation of iron by hepcidin is of clinical importance in thalassemia patients in which anemia occurs along with iron overload. The present study aimed to evaluate the correlation between serum hepcidin and ferritin levels in thalassemia patients. This cross-sectional study investigated 64 patients with thalassemia; 16 β-thalassemia major (BTM), 31 β-thalassemia/hemoglobin (Hb) E (BE), and 17 Hb H + AE Bart’s disease (Hb H + AE Bart’s). The levels of serum hepcidin and ferritin, and Hb of the three groups were measured. The median values of serum ferritin and Hb were significantly different among the three groups, whereas serum hepcidin values were not observed to be significantly different. The correlation of the serum hepcidin and ferritin levels was not statistically significant in any of the three groups of thalassemia patients with BTM, BE, or Hb H + AE Bart’s (r = −0.141, 0.065 and −0.016, respectively). In conclusion, no statistically significant correlations were observed between serum hepcidin with any variables including serum ferritin, Hb, age, labile plasma iron (LPI), and number of blood transfusion units among the three groups of thalassemia patients. Likely, the regulation of hepcidin in thalassemia patients is affected more by erythropoietic activity than iron storage.  相似文献   
72.
Regulation of the mitogen-activated protein kinase (MAPK) family by prolactin-releasing peptide (PrRP) in both GH3 rat pituitary tumor cells and primary cultures of rat anterior pituitary cells was investigated. PrRP rapidly and transiently activated extracellular signal-regulated protein kinase (ERK) in both types of cells. Both pertussis toxin, which inactivates G(i)/G(o) proteins, and exogenous expression of a peptide derived from the carboxyl terminus of the beta-adrenergic receptor kinase I, which specifically blocks signaling mediated by the betagamma subunits of G proteins, completely blocked the PrRP-induced ERK activation, suggesting the involvement of G(i)/G(o) proteins in the PrRP-induced ERK activation. Down-regulation of cellular protein kinase C did not significantly inhibit the PrRP-induced ERK activation, suggesting that a protein kinase C-independent pathway is mainly involved. PrRP-induced ERK activation was not dependent on either extracellular Ca(2+) or intracellular Ca(2+). However, the ERK cascade was not the only route by which PrRP communicated with the nucleus. JNK was also shown to be significantly activated in response to PrRP. JNK activation in response to PrRP was slower than ERK activation. Moreover, to determine whether a MAPK family cascade regulates rat prolactin (rPRL) promoter activity, we transfected the intact rPRL promoter ligated to the firefly luciferase reporter gene into GH3 cells. PrRP activated the rPRL promoter activity in a time-dependent manner. Co-transfection with a catalytically inactive form of a MAPK construct or a dominant negative JNK, partially but significantly inhibited the induction of the rPRL promoter by PrRP. Furthermore, co-transfection with a dominant negative Ets completely abolished the response of the rPRL promoter to PrRP. These results suggest that PrRP differentially activates ERK and JNK, and both cascades are necessary to elicit rPRL promoter activity in an Ets-dependent mechanism.  相似文献   
73.
We demonstrate herein the ability of Kluyveromyces marxianus to be an efficient ethanol producer and host for expressing heterologous proteins as an alternative to Saccharomyces cerevisiae. Growth and ethanol production by strains of K. marxianus and S. cerevisiae were compared under the same conditions. K. marxianus DMKU3-1042 was found to be the most suitable strain for high-temperature growth and ethanol production at 45°C. This strain, but not S. cerevisiae, utilized cellobiose, xylose, xylitol, arabinose, glycerol, and lactose. To develop a K. marxianus DMKU3-1042 derivative strain suitable for genetic engineering, a uracil auxotroph was isolated and transformed with a linear DNA of the S. cerevisiae ScURA3 gene. Surprisingly, Ura+ transformants were easily obtained. By Southern blot hybridization, the linear ScURA3 DNA was found to have inserted randomly into the K. marxianus genome. Sequencing of one Lys transformant confirmed the disruption of the KmLYS1 gene by the ScURA3 insertion. A PCR-amplified linear DNA lacking K. marxianus sequences but containing an Aspergillus α-amylase gene under the control of the ScTDH3 promoter together with an ScURA3 marker was subsequently used to transform K. marxianus DMKU3-1042 in order to obtain transformants expressing Aspergillus α-amylase. Our results demonstrate that K. marxianus DMKU3-1042 can be an alternative cost-effective bioethanol producer and a host for transformation with linear DNA by use of S. cerevisiae-based molecular genetic tools.  相似文献   
74.
D-Aminoacylase from Alcaligenes xylosoxydans subsp. xylosoxydans A-6 (Alcaligenes A-6) was strongly inactivated by diethylpyrocarbonate (DEPC). An H67N mutant was barely active, with a kcat/Km 6.3 x 10(4) times lower than that of the recombinant wild-type enzyme, while the H67I mutant lost detectable activity. The H67N mutant had almost constant Km, but greatly decreased kcat. These results suggested that His67 is essential to the catalytic event. Both H69N and H69I mutants were overproduced in the insoluble fraction. The kcat/Km of H250N mutant was reduced by a factor of 2.5 x 10(4)-fold as compared with the wild-type enzyme. No significant difference between H251N mutant and wild-type enzymes in the Km and kcat was found. The Zn content of H250N mutant was nearly half of that of wild-type enzyme. These results suggest that the His250 residue might be essential to catalysis via Zn binding.  相似文献   
75.
The establishment of a functional brain requires coordinated and stereotyped formation of synapses between neurons. For this, trans-synaptic molecular cues (synaptic organizers) are exchanged between a neuron and its target to organize appropriate synapses. The understanding of signalling mechanisms by which such synaptic organizers lead to synapse formation is just being elucidated. However, recent studies revealed that some of these cues act through receptor protein tyrosine kinases (RPTKs) or phosphatases (RPTPs). Synaptogenic RPTKs and RPTPs pattern synaptic network through affecting local protein-protein binding dynamics, changing the phosphorylation state of signalling cascades, or promoting gene expression. Each RPTK or RPTP has distinct roles in synapse formation, serving at different synapses or showing differential synaptogenic effects. Thus, tyrosine phosphorylation signalling plays critical roles in building the orchestrated synaptic circuitry in the brain.  相似文献   
76.
Matsui S  Noma H 《Biometrics》2011,67(4):1225-1235
Summary In microarray screening for differentially expressed genes using multiple testing, assessment of power or sample size is of particular importance to ensure that few relevant genes are removed from further consideration prematurely. In this assessment, adequate estimation of the effect sizes of differentially expressed genes is crucial because of its substantial impact on power and sample‐size estimates. However, conventional methods using top genes with largest observed effect sizes would be subject to overestimation due to random variation. In this article, we propose a simple estimation method based on hierarchical mixture models with a nonparametric prior distribution to accommodate random variation and possible large diversity of effect sizes across differential genes, separated from nuisance, nondifferential genes. Based on empirical Bayes estimates of effect sizes, the power and false discovery rate (FDR) can be estimated to monitor them simultaneously in gene screening. We also propose a power index that concerns selection of top genes with largest effect sizes, called partial power. This new power index could provide a practical compromise for the difficulty in achieving high levels of usual overall power as confronted in many microarray experiments. Applications to two real datasets from cancer clinical studies are provided.  相似文献   
77.
78.
Transient receptor potential canonicals (TRPCs) play important roles in the regulation of intracellular calcium concentration. Mutations in the TRPC6 gene are found in patients with focal segmental glomerulosclerosis (FSGS), a proteinuric disease characterized by dysregulated function of renal glomerular epithelial cells (podocytes). There is as yet no clear picture for the activation mechanism of TRPC6 at the molecular basis, however, and the association between its channel activity and pathogenesis remains unclear. We demonstrate here that tyrosine phosphorylation of TRPC6 induces a complex formation with phospholipase C (PLC)-γ1, which is prerequisite for TRPC6 surface expression. Furthermore, nephrin, an adhesion protein between the foot processes of podocytes, binds to phosphorylated TRPC6 via its cytoplasmic domain, competitively inhibiting TRPC6-PLC-γ1 complex formation, TRPC6 surface localization, and TRPC6 activation. Importantly, FSGS-associated mutations render the mutated TRPC6s insensitive to nephrin suppression, thereby promoting their surface expression and channel activation. These results delineate the mechanism of TRPC6 activation regulated by tyrosine phosphorylation, and imply the cell type-specific regulation, which correlates the FSGS mutations with deregulated TRPC6 channel activity.  相似文献   
79.
Anthranilate synthase (AS) is a key enzyme in tryptophan (Trp) biosynthesis. Metabolic changes in transgenic Arabidopsis plants expressing the feedback-resistant anthranilate synthase alpha subunit gene OASA1D were investigated with respect to Trp synthesis and effects on secondary metabolism. The Trp content varied depending on the transgenic line, with some lines showing an approximately 200-fold increase. The levels of AS activity in crude extracts from the transgenic lines were comparable to those in the wild type. On the other hand, the enzyme prepared from the lines accumulating high levels of Trp showed a relaxed feedback sensitivity. The AS activity, determined in the presence of 50 microM L-Trp, correlated well with the amount of free Trp in the transgenic lines, indicating the important role of feedback inhibition in control of Trp pool size. In Arabidopsis, Trp is a precursor of multiple secondary metabolites, including indole glucosinolates and camalexin. The amount of indol-3-ylmethyl glucosinolate (I3 M) in rosette leaves of the high-Trp accumulating lines was 1.5- to 2.1-fold greater than that in wild type. The treatment of the leaves with jasmonic acid resulted in a more pronounced accumulation of I3 M in the high-Trp accumulating lines than in wild type. The induction of camalexin formation after the inoculation of Alternaria brassicicola was not affected by the accumulation of a large amount of Trp. The accumulation of constitutive phenylpropanoids and flavonoids was suppressed in high-Trp accumulating lines, while the amounts of Phe and Tyr increased, thereby indicating an interaction between the Trp branch and the Phe and Tyr branch in the shikimate pathway.  相似文献   
80.
The 3-fucosyl-N-acetyllactosamine [Lewis x (Le(x)), CD15, SSEA-1] carbohydrate structure is expressed on several glycolipids, glycoproteins, and proteoglycans of the nervous system and has been implicated in cell-cell recognition, neurite outgrowth, and neuronal migration during development. To characterize the functional role of Le(x) carbohydrate structure in vivo, we have generated mutant mice that lack alpha1,3-fucosyltransferase IX (Fut9(-/-)). Fut9(-/-) mice were unable to synthesize the Le(x) structure carried on glycoproteins and glycolipids in embryonic and adult brain. However, no obvious pathological differences between wild-type and Fut9(-/-) mice were found in brain. In behavioral tests, Fut9(-/-) mice exhibited increased anxiety-like responses in dark-light preference and in elevated plus maze tests. Immunohistochemical analysis showed that the number of calbindin-positive neurons was decreased in the basolateral amygdala in Fut9(-/-) mice. These observations indicated that the carbohydrates synthesized by Fut9 play critical roles in functional regulations of interneurons in the amygdalar subdivisions and suggested a role for the Le(x) structure in some aspects of emotional behavior in mice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号