首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   242篇
  免费   15篇
  2022年   2篇
  2021年   3篇
  2020年   1篇
  2019年   3篇
  2018年   11篇
  2017年   4篇
  2016年   4篇
  2015年   6篇
  2014年   12篇
  2013年   9篇
  2012年   23篇
  2011年   20篇
  2010年   6篇
  2009年   5篇
  2008年   14篇
  2007年   13篇
  2006年   14篇
  2005年   17篇
  2004年   14篇
  2003年   15篇
  2002年   13篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1997年   3篇
  1996年   3篇
  1995年   5篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1974年   1篇
  1971年   2篇
排序方式: 共有257条查询结果,搜索用时 375 毫秒
61.
62.
63.
Exocytosis plays an essential role in fundamental cellular events by secreting neurotransmitters, hormones, and cytokines. Although the minimal molecular components termed SNARE that govern membrane fusion have been identified, the precise mechanisms behind the finely-tuned regulation of exocytosis executed by many molecules in addition to the actions of SNARE remain to be fully identified. Here, we evaluated a model system for assaying catecholamine secretion from permeabilized rat pheochromocytoma PC12 cells, in which the structural integrity required was preserved adequately. Among several chemical reagents used for the cell permeabilization and freezing-thawing procedures, the treatment of cells with digitonin at concentrations of 7.5–15 μM was most suitable for the secretion assay, as it was considered to cause mild disruption of the plasma membrane, enabling free access to small molecules such as Ca2+ and ATP to the minimal membrane fusion machinery. No additional cytosolic proteins were required to reconstitute the secretion. In this assay model, ATP was necessary to maintain the priming state before Ca2+-triggered exocytosis but was not required for the Ca2+-triggered membrane fusion process itself. The present study provides a useful cell model for exploring novel molecules that may be implicated in exocytosis such as those playing regulatory roles in addition to the “minimal membrane fusion machinery for exocytosis”, which does not require any additional special apparatus.  相似文献   
64.
The archaeal toxin, aRelE, in the hyperthermophilic archaeon Pyrococcus horikoshii OT3 inhibits protein synthesis, whereas its cognate antitoxin, aRelB, neutralizes aRelE activity by forming a non-toxic complex, aRelB-aRelE. The structural mechanism whereby aRelB neutralizes aRelE activity was examined by biochemical and biophysical analyses. Overexpression of aRelB with an aRelE mutant (ΔC6), in which the C-terminal residues critical for aRelE activity were deleted, in Escherichia coli allowed a stable complex, aRelB-ΔC6, to be purified. Isothermal titration of aRelE or ΔC6 with aRelB indicated that the association constant (Ka) of wild-type aRelB-aRelE is similar to that of aRelB-ΔC6, demonstrating that aRelB makes little contact with the C-terminal active site of aRelE. Overexpression of deletion mutants of aRelB with aRelE indicated that either the N-terminal (pos. 1-27) or C-terminal (pos. 50-67) fragment of aRelB is sufficient to counteract the toxicity of aRelE in E. coli cells and the second α-helix (α2) in aRelB plays a critical role in forming a stable complex with aRelE. The present results demonstrate that aRelB, as expected from its X-ray structure, precludes aRelE from entering the ribosome, wrapping around the molecular surface of aRelE.  相似文献   
65.
66.
We evaluated the cytotoxic and apoptotic effects of two purine nucleoside analogues, acyclovir (ACV) and ganciclovir (GCV), on lymphoma cells stably harboring Kaposi's sarcoma-associated herpesvirus (KSHV). Colorimetric caspase assay, flow cytometry, and immunoblotting with antibodies against apoptosis-related molecules revealed that GCV has cytotoxic activity toward KSHV-infected primary effusion lymphoma cells, while ACV has weak or little activity. In addition to the GCV-induced cytotoxicity, apoptosis via caspase-7/8, cleavage of poly(ADP-ribose) polymerase, and accumulation of p53 and p21 were induced by GCV treatment. In contrast, neither ACV nor GCV have cytotoxicity- or apoptosis-inducing activities toward uninfected cells.  相似文献   
67.
Phenylglyoxal (PGO) was used as a reagent for chemical modification of the ATP-binding site of Ca2+-transporting ATPase of rabbit skeletal muscle sarcoplasmic reticulum (SR-ATPase). When 1 mM PGO was reacted with SR-ATPase at 30°C at pH 8.5, PGO was bound to the ATPase molecule in two-to-one stoichiometry with concomitant loss of activity of the ATPase to form the phosphorylated intermediate (E-P). ATP and ADP prevented the binding of PGO and thereby protected the enzyme from inactivation. The SR membranes were labeled with [14C]PGO and then digested with pepsin to identify the attachment site of PGO. A 14C-labeled peptide (402lle-Arg*-Ser-Gly-Gln406) was purified to homogeneity by C18-reversed phase HPLC (Arg* denotes the binding site of [14C]PGO). These results indicate that Arg403 is located in the ATP binding site of the SR-ATPase.  相似文献   
68.
Platelets store self-agonists such as ADP and serotonin in dense core granules. Although exocytosis of these granules is crucial for hemostasis and thrombosis, the underlying mechanism is not fully understood. Here, we show that incubation of permeabilized platelets with unprenylated active mutant Rab27A-Q78L, wild type Rab27A, and Rab27B inhibited the secretion, whereas inactive mutant Rab27A-T23N and other GTPases had no effects. Furthermore, we affinity-purified a GTP-Rab27A-binding protein in platelets and identified it as Munc13-4, a homologue of Munc13-1 known as a priming factor for neurotransmitter release. Recombinant Munc13-4 directly bound to GTP-Rab27A and -Rab27B in vitro, but not other GTPases, and enhanced secretion in an in vitro assay. The inhibition of secretion by unprenylated Rab27A was rescued by the addition of Munc13-4, suggesting that Munc13-4 mediates the function of GTP-Rab27. Thus, Rab27 regulates the dense core granule secretion in platelets by employing its binding protein, Munc13-4.  相似文献   
69.
Cyanobacterial clock protein KaiC has a hexagonal, pot-shaped structure composed of six identical dumbbell-shaped subunits. Each subunit has duplicated domains, and each domain has a set of ATPase motifs. The two spherical regions of the dumbbell are likely to correspond to two domains. We examined the role of the two sets of ATPase motifs by analyzing the in vitro activity of ATPgammaS binding, AMPPNP-induced hexamerization, thermostability, and phosphorylation of KaiC and by in vivo rhythm assays both in wild type KaiC (KaiCWT) and KaiCs carrying mutations in either Walker motif A or deduced catalytic Glu residues. We demonstrated that 1) the KaiC subunit had two types of ATP-binding sites, a high affinity site in N-terminal ATPase motifs and a low affinity site in C-terminal ATPase motifs, 2) the N-terminal motifs were responsible for hexamerization, and 3) the C-terminal motifs were responsible for both stabilization and phosphorylation of the KaiC hexamer. We proposed the following reaction mechanism. ATP preferentially binds to the N-terminal high affinity site, inducing the hexamerization of KaiC. Additional ATP then binds to the C-terminal low affinity site, stabilizing and phosphorylating the hexamer. We discussed the effect of these KaiC mutations on circadian bioluminescence rhythm in cells of cyanobacteria.  相似文献   
70.
We have analyzed the mutagenic specificity of an abasic site in DNA using the yeast oligonucleotide transformation assay. Oligonucleotides containing an abasic site or its analog were introduced into B7528 or its derivatives, and nucleotide incorporation opposite abasic sites was analyzed. Cytosine was most frequently incorporated opposite a natural abasic site (O) (‘C-rule’), followed by thymine. Deletion of REV1 decreased the transformation efficiency and the incorporation of cytosine nearly to a background level. In contrast, deletion of RAD30 did not affect them. We compared the mutagenic specificity with that of a tetrahydrofuran abasic site (F), an abasic analog used widely. Its mutation spectrum was clearly different from that of O. Adenine, not cytosine, was most favorably incorporated. However, deletion of REV1 decreased the transformation efficiency with F-containing oligonucleotide as in the case of O. These results suggest that the bypass mechanism of F is different from that of O, although the bypasses in both cases are dependent on REV1. We also found that the mutagenic specificity of F can be affected by not only the adjacent bases, but also a base located two positions away from F.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号