首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   214篇
  免费   4篇
  2022年   2篇
  2021年   2篇
  2020年   2篇
  2019年   5篇
  2018年   3篇
  2017年   5篇
  2015年   6篇
  2014年   5篇
  2013年   10篇
  2012年   9篇
  2011年   10篇
  2010年   3篇
  2009年   13篇
  2008年   9篇
  2007年   9篇
  2006年   16篇
  2005年   8篇
  2004年   14篇
  2003年   11篇
  2002年   12篇
  2001年   4篇
  2000年   5篇
  1999年   3篇
  1998年   2篇
  1996年   4篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   5篇
  1988年   3篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   4篇
  1981年   2篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
  1971年   3篇
  1970年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有218条查询结果,搜索用时 31 毫秒
61.
Inactivating mutations of the V2 vasopressin receptor (V2R) cause cross-linked congenital nephrogenic diabetes insipidus (NDI), resulting in renal resistance to the antidiuretic hormone AVP. In two families showing partial NDI, characterized by an apparently normal response to diagnostic tests and an increase in the basal ADH levels suggesting AVP resistance, we have identified two V2R mutations, Ser-333del and Y128S. Both mutant V2Rs, when expressed in COS-7 cells, show partial defects in vasopressin-stimulated cAMP accumulation and intracellular localization. The inhibition of internalization does not rescue their localization. In contrast, the non-peptide V2R antagonists OPC41061 and OPC31260 partially rescue the membrane localization and basal function of these V2R mutants, whereas they inhibit the basal activity of the wild-type V2R. These results indicate that a partial loss of function of Ser-333del and Y128S mutant V2Rs results from defective membrane trafficking. These findings further indicate that V2R antagonists can act as protean agonists, serving as pharmacological chaperones for inactivating V2R mutants and also as inverse agonists of wild-type receptors. We speculate that this protean agonism could underlie the possible dual beneficial effects of the V2R antagonist: improvement of hyponatremia with heart failure or polycystic kidney disease and potential rescue of NDI.  相似文献   
62.
63.
DNA markers able to distinguish species or genera with high specificity are valuable in the identification of introgressed regions in interspecific or intergeneric hybrids. Intergeneric hybridization between the genera of Lolium and Festuca, leading to the reciprocal introgression of chromosomal segments, can produce novel forage grasses with unique combinations of characteristics. To characterize Lolium/Festuca introgressions, novel PCR-based expression sequence tag (EST) markers were developed. These markers were designed around intronic regions which show higher polymorphism than exonic regions. Intronic regions of the grass genes were predicted from the sequenced rice genome. Two hundred and nine primer sets were designed from Lolium/Festuca ESTs that showed high similarity to unique rice genes dispersed uniformly throughout the rice genome. We selected 61 of these primer sets as insertion-deletion (indel)-type markers and 82 primer sets as cleaved amplified polymorphic sequence (CAPS) markers to distinguish between Lolium perenne and Festuca pratensis. Specificity of these markers to each species was evaluated by the genotyping of four cultivars and accessions (32 individuals) of L. perenne and F. pratensis, respectively. Evaluation using specificity indices proposed in this study suggested that many indel-type markers had high species specificity to L. perenne and F. pratensis, including 15 markers completely specific to both species. Forty-nine of the CAPS markers completely distinguish between the two species at bulk level. Chromosome mapping of these markers using a Lolium/Festuca substitution line revealed syntenic relationships between Lolium/Festuca and rice largely consistent with previous reports. This intron-based marker system that shows a high level of polymorphisms between species in combination with high species specificity will consequently be a valuable tool in Festulolium breeding. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
64.
Pikachurin, the most recently identified ligand of dystroglycan, plays a crucial role in the formation of the photoreceptor ribbon synapse. It is known that glycosylation of dystroglycan is necessary for its ligand binding activity, and hypoglycosylation is associated with a group of muscular dystrophies that often involve eye abnormalities. Because little is known about the interaction between pikachurin and dystroglycan and its impact on molecular pathogenesis, here we characterize the interaction using deletion constructs and mouse models of muscular dystrophies with glycosylation defects (Largemyd and POMGnT1-deficient mice). Pikachurin-dystroglycan binding is calcium-dependent and relatively less sensitive to inhibition by heparin and high NaCl concentration, as compared with other dystroglycan ligand proteins. Using deletion constructs of the laminin globular domains in the pikachurin C terminus, we show that a certain steric structure formed by the second and the third laminin globular domains is necessary for the pikachurin-dystroglycan interaction. Binding assays using dystroglycan deletion constructs and tissue samples from Large-deficient (Largemyd) mice show that Large-dependent modification of dystroglycan is necessary for pikachurin binding. In addition, the ability of pikachurin to bind to dystroglycan prepared from POMGnT1-deficient mice is severely reduced, suggesting that modification of the GlcNAc-β1,2-branch on O-mannose is also necessary for the interaction. Immunofluorescence analysis reveals a disruption of pikachurin localization in the photoreceptor ribbon synapse of these model animals. Together, our data demonstrate that post-translational modification on O-mannose, which is mediated by Large and POMGnT1, is essential for pikachurin binding and proper localization, and suggest that their disruption underlies the molecular pathogenesis of eye abnormalities in a group of muscular dystrophies.  相似文献   
65.
Marine pufferfish (family Tetraodontidae) are believed to accumulate tetrodotoxin (TTX) mainly in liver and ovary through the food chain by ingesting TTX-bearing organisms such as starfish, gastropods, crustacean, flatworms, ribbonworms, etc. Consequently, it is hypothesized that non-toxic pufferfish can be produced if they are cultured with TTX-free diets in netcages at sea or aquaria on land, where the invasion of TTX-bearing organisms is completely shut off. To confirm this hypothesis, more than 5000 specimens of the pufferfish (“torafugu”, Takifugu rubripes) cultured in such manners for 1–3 years were collected from several locations in Japan during 2001–2004, and toxicity of their livers and some other parts was examined according to the Japanese official mouse assay method for TTX. In addition, typical specimens were submitted to LC/MS analysis. The results showed that all the livers and other parts tested were ‘non-toxic’ in both of the mouse assay (less than 2 MU/g) and LC/MS analysis (less than 0.1 MU/g). Thus, it is undoubtedly confirmed that pufferfish are intoxicated through the food chain, and non-toxic pufferfish can be successfully produced by netcage or land culture. The livers from these fish can be used with safety as a Japanese traditional food “fugu-kimo” (puffer liver).  相似文献   
66.
Walker-Warburg syndrome, caused by mutations in protein O-mannosyltransferase-1 (POMT1), is an autosomal recessive disorder characterized by severe brain malformation, muscular dystrophy, and structural eye abnormalities. As humans have a second POMT, POMT2, we cloned each Drosophila ortholog of the human POMT genes and carried out RNA interference (RNAi) knock-down to investigate the function of these proteins in vivo. Drosophila POMT2 (dPOMT2) RNAi mutant flies showed a "twisted abdomen phenotype," in which the abdomen is twisted 30-60 degrees , similar to the dPOMT1 mutant. Moreover, dPOMT2 interacted genetically with dPOMT1, suggesting that the dPOMTs function in collaboration with each other in vivo. We expressed dPOMTs in Sf21 cells and measured POMT activity. dPOMT2 transferred a mannose to the dystroglycan protein only when it was coexpressed with dPOMT1. Likewise, dPOMT1 showed POMT activity only when coexpressed with dPOMT2, and neither dPOMT showed any activity by itself. Each dPOMT RNAi fly totally reduced POMT activity, despite the specific reduction in the level of each dPOMT mRNA. The expression pattern of dPOMT2 mRNA was found to be similar to that of dPOMT1 mRNA using whole mount in situ hybridization. These results demonstrate that the two dPOMTs function as a protein O-mannosyltransferase in association with each other, in vitro and in vivo, to generate and maintain normal muscle development.  相似文献   
67.
Walker-Warburg syndrome (WWS) is an autosomal recessive developmental disorder characterized by congenital muscular dystrophy, brain malformation, and structural eye abnormalities. WWS is due to defects in protein O-mannosyltransferase 1 (POMT1), which catalyzes the transfer of mannose to protein to form O-mannosyl glycans. POMT1 has been shown to require co-expression of another homologue, POMT2, to have activity. In the present study, mutations in POMT1 genes observed in patients with WWS were duplicated by site-directed mutagenesis. The mutant genes were co-expressed with POMT2 in Sf9 cells and assayed for protein O-mannosyltransferase activity. Expression of all mutant proteins was confirmed by Western blot, but the recombinant proteins did not show any protein O-mannosyltransferase activity. The results indicate that mutations in the POMT1 gene result in a defect of protein O-mannosylation in WWS patients. This may cause failure of binding between alpha-dystroglycan and laminin or other molecules in the extracellular matrix and interrupt normal muscular function and migration of neurons in developing brain.  相似文献   
68.
Whole-genome amplification (WGA) methods were adopted for single-nucleotide-polymorphism (SNP) typing to minimize the amount of genomic DNA that has to be used in typing for thousands of different SNPs in large-scale studies; 5-10 ng of genomic DNA was amplified by a WGA method (improved primer-extension-preamplification-polymerase chain reaction (I-PEP-PCR), degenerated oligonucleotide primer-PCR (DOP-PCR), or multiple displacement amplification (MDA)). Using 1/100 to 1/500 amounts of the whole-genome-amplified products as templates, subsequent analyses were successfully performed. SNPs were genotyped by the sequence-specific primer (SSP)-PCR method followed by fluorescence correlation spectroscopy (FCS). The typing results were evaluated for four different SNPs on tumor necrosis factor receptor 1 and 2 genes (TNFR1 and TNFR2). The genotypes determined by the SSP-FCS method using the WGA products were 100% in concordance with those determined by nucleotide sequencing using genomic DNAs. We have already carried out typing of more than 300 different SNPs and are currently performing 7,500-10,000 typings per day using WGA samples from patients with several common diseases. WGA coupled with FCS allows specific and high-throughput genotyping of thousands of samples for thousands of different SNPs.  相似文献   
69.
Aeromonas caviae R-specific enoyl-coenzyme A (enoyl-CoA) hydratase (PhaJ(Ac)) is capable of providing (R)-3-hydroxyacyl-CoA with a chain length of four to six carbon atoms from the fatty acid beta-oxidation pathway for polyhydroxyalkanoate (PHA) synthesis. In this study, amino acid substitutions were introduced into PhaJ(Ac) by site-directed mutagenesis to investigate the feasibility of altering the specificity for the acyl chain length of the substrate. A crystallographic structure analysis of PhaJ(Ac) revealed that Ser-62, Leu-65, and Val-130 define the width and depth of the acyl-chain-binding pocket. Accordingly, we targeted these three residues for amino acid substitution. Nine single-mutation enzymes and two double-mutation enzymes were generated, and their hydratase activities were assayed in vitro by using trans-2-octenoyl-CoA (C(8)) as a substrate. Three of these mutant enzymes, L65A, L65G, and V130G, exhibited significantly high activities toward octenoyl-CoA than the wild-type enzyme exhibited. PHA formation from dodecanoate (C(12)) was examined by using the mutated PhaJ(Ac) as a monomer supplier in recombinant Escherichia coli LS5218 harboring a PHA synthase gene from Pseudomonas sp. strain 61-3 (phaC1(Ps)). When L65A, L65G, or V130G was used individually, increased molar fractions of 3-hydroxyoctanoate (C(8)) and 3-hydroxydecanoate (C(10)) units were incorporated into PHA. These results revealed that Leu-65 and Val-130 affect the acyl chain length substrate specificity. Furthermore, comparative kinetic analyses of the wild-type enzyme and the L65A and V130G mutants were performed, and the mechanisms underlying changes in substrate specificity are discussed.  相似文献   
70.
We have developed a new procedure for Agrobacterium-mediated transformation of plants in the genus Beta using shoot-base as the material for Agrobacterium infection. The frequency of regeneration from shoot bases was analyzed in seven accessions of sugarbeet (Beta vulgaris) and two accessions of B. maritima to select materials suitable for obtaining transformed plants. The frequency of transformation of the chosen accessions using Agrobacterium strain LBA4404 and selection on 150-mg/l kanamycin was found to be higher than that in previously published methods. Genomic DNA analysis and -glucuronidase reporter assays showed that the transgene was inherited and expressed in subsequent generations. In our method, shoot bases are prepared by a simple procedure, and transformation does not involve the callus phase, thus minimizing the occurrence of somaclonal variations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号