首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   515篇
  免费   27篇
  2022年   3篇
  2021年   4篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2017年   5篇
  2016年   7篇
  2015年   11篇
  2014年   10篇
  2013年   12篇
  2012年   22篇
  2011年   22篇
  2010年   15篇
  2009年   20篇
  2008年   26篇
  2007年   24篇
  2006年   18篇
  2005年   23篇
  2004年   23篇
  2003年   21篇
  2002年   25篇
  2001年   17篇
  2000年   23篇
  1999年   20篇
  1998年   3篇
  1997年   2篇
  1996年   5篇
  1995年   4篇
  1994年   3篇
  1993年   2篇
  1992年   24篇
  1991年   17篇
  1990年   16篇
  1989年   21篇
  1988年   13篇
  1987年   15篇
  1986年   12篇
  1985年   7篇
  1984年   2篇
  1983年   6篇
  1982年   5篇
  1981年   5篇
  1980年   4篇
  1979年   5篇
  1978年   2篇
  1977年   1篇
  1975年   2篇
  1973年   1篇
  1972年   3篇
  1970年   4篇
排序方式: 共有542条查询结果,搜索用时 15 毫秒
111.
112.
Human lysozyme is made up of 130 amino acid residues and has four disulfide bonds at Cys6-Cys128, Cys30-Cys116, Cys65-Cys81, and Cys77-Cys95. Our previous results using the Saccharomyces cerevisiae secretion system indicate that the individual disulfide bonds of human lysozyme have different functions in the correct in vivo folding and enzymatic activity of the protein (Taniyama, Y., Yamamoto, Y., Nakao, M., Kikuchi, M., and Ikehara, M. (1988) Biochem. Biophys. Res. Commun. 152, 962-967). In this paper, we report the results of experiments that were focused on the roles of Cys65 and Cys81 in the folding of human lysozyme protein in yeast. A mutant protein (C81A), in which Cys81 was replaced with Ala, had almost the same enzymatic activity and conformation as those of the native enzyme. On the other hand, another mutant (C65A), in which Cys65 was replaced with Ala, was not found to fold correctly. These results indicate that Cys81 is not a requisite for both correct folding and activity, whereas Cys65 is indispensable. The mutant protein C81A is seen to contain a new, non-native disulfide bond at Cys65-Cys77. The possible occurrence of disulfide bond interchange during our mapping experiments cannot be ruled out by the experimental techniques presently available, but characterization of other mutant proteins and computer analysis suggest that the intramolecular exchange of disulfide bonds is present in the folding pathway of human lysozyme in vivo.  相似文献   
113.
Reassembly of the neurofilament (NF) in vitro was studied by low-angle rotary shadowing electron microscopy. Various intermediate stages of the reassembly were reconstructed from the smallest molecular mass subunit (NF-L) under controlled reassembly conditions. NF-L in 6 M-urea took the form of spherical particles with a diameter of about 12 nm. NF-L aggregated into rodlets of 70 to 80 nm long in a low-salt solution at alkaline pH. By reducing the pH of the dialyzing solution to 6.6, a pair of rods was formed by association side-by-side. Increasing the temperature of low-salt solutions from 4 degrees C to 35 degrees C did not produce intermediate-sized filaments. The addition of Mg2+ to the dialyzing solution resulted in the formation of short intermediate-sized filaments even at 4 degrees C. Further dialysis of the short intermediate-sized filaments against reassembly solution containing both NaCl and MgCl2 at 37 degrees C failed to elongate them into longer filaments, suggesting that annealing does not contribute to the elongation of neurofilaments. Different roles for Mg+ and NaCl in neurofilament reassembly were indicated. While Mg2+ strengthened the lateral association between 70 to 80 nm rods, NaCl appeared to promote the end-to-end association of filaments preferentially. Longer filaments were formed by increasing the NaCl concentration. By dialyzing NF-L against a buffer containing 50 mM-NaCl in the absence of Mg2+, unraveled filaments were formed. The many unraveled filaments were composed of four 8 nm wide filaments, which have been called the subfilament or the protofibril. Time-course experiments of the reassembly were performed in the absence of Mg2+, in which condition the rate of neurofilament reassembly appeared to be reduced. Star-like clusters, about four protofibrils joined together at one end, were suggested to be the initial stage of the intermediate-sized filament formation. The following two-step elongation mechanism of neurofilaments was deduced from these results. The pairs of rods were added to the ends of the protofibrils of neurofilaments, and after all four protofibrils were elongated they were then packed into neurofilaments. Distribution of larger molecular mass subunits, NF-M and NF-H, was studied. Addition of NF-M or NF-H to NF-L did not change the assembly properties of neurofilaments. Unraveled filaments reconstituted from NF-L plus either NF-M or NF-H indicated that NF-M and NF-H are incorporated evenly into each protofibril.  相似文献   
114.
Platelet activating factor (PAF) is a newly discovered inflammatory chemical mediator, which was reported to play a pivotal role in various types of shock. There is also a great possibility that PAF plays an important role in the shock caused by hepatic inflow occlusion. In the present study, the effect of CV6209, a PAF antagonist, on the shock caused by the occlusion was investigated. Intravenous 3 micrograms/kg of PAF caused hypotension in Wistar rats (n=6), and pretreatment with intravenous 3 mg/kg of CV6209 significantly (p less than 0.01) prevented the hypotension (n=6). Forty-five minutes of hepatic inflow occlusion caused hypotension in rats during the occlusion period, and the hypotension continued even after restoration of blood flow in control group (pretreated with saline i.v. only, n=5). In contrast, this hypotension was significantly (p less than 0.01) reversed in PAF antagonist group (pretreated with 3 mg/kg of CV6209 i.v., n=5). In sham-operated rats (n=6), arterial pressure remained unchanged and not hypotensive during the monitoring period. The survival rate of rats 90 minutes after declamp was 30% in control group (n=20), and that was significantly (p less than 0.05) improved to be 65% in PAF antagonist group (n=20). In conclusion, PAF plays an important role in the shock and death caused by temporary hepatic inflow occlusion, and a PAF antagonist could be a therapeutic drug against temporary hepatic inflow occlusion.  相似文献   
115.
Identification of bile alcohols in human bile   总被引:1,自引:0,他引:1  
Human gallbladder bile was examined for bile alcohols. Following isolation and hydrolysis, the bile alcohols were analyzed by capillary gas-liquid chromatography-mass spectrometry. The following bile alcohols were identified with certainty by direct comparison with reference standards: 5 beta-cholane-3 alpha,-7 alpha,23,24-tetrol; 5 beta-cholane-3 alpha,7 alpha,12 alpha,24-tetrol; 24-nor-5 beta-cholestane-3 alpha,7 alpha,12 alpha,25-tetrol; 27-nor-5 beta-cholest-25-ene-3 alpha,7 alpha,-12 alpha,24-tetrol; 3 alpha,7 alpha,12 alpha-trihydroxy-27-nor-5 beta-cholestan-24-one; 27-nor-5 beta-cholestane-3 alpha,7 alpha,12 alpha,24,25-pentol; 27-nor-5 beta-cholestane-3 alpha,7 alpha,12 alpha,24,25,26-hexol; 5 beta-cholestane-3 alpha,7 alpha,24-triol; 5 beta-cholestane-3 alpha,7 alpha,25-triol; 5 beta-cholestane-3 alpha,7 alpha,26-triol; 5 alpha-cholestane-3 alpha,7 alpha,12 alpha,24-tetrol; 5 beta-cholestane-3 alpha,7 alpha,12 alpha,24-tetrol; 5 beta-cholestane-3 alpha,7 alpha,12 alpha,25-tetrol; 5 beta-cholestane-3 alpha,7 alpha,12 alpha,26-tetrol; (24R)- and (24S)-5 beta-cholestane-3 alpha,7 alpha,12 alpha,24,25-pentols; 5 beta-cholestane-3 alpha,7 alpha,12 alpha,24,26-pentol; 5 beta-cholestane-3 alpha,7 alpha,12 alpha,-25,26-pentol; 5 beta-cholestane-3 alpha,7 alpha,12 alpha,26,27-pentol; 26-methoxy-5 beta-cholestane-3 alpha,7 alpha,12 alpha,25-tetrol. There also existed two norcholestanetetrols and three cholestanetetrols with two hydroxyl substituents on the nucleus and two in the side chain. The human biliary bile alcohols occurred mainly as sulfate esters and in lesser amounts as glucuronoconjugated and unconjugated forms. The amount of total bile alcohols was about 0.9 mg (0.7-1.2 mg) in 1 g of bile solid, or 0.16 mumol (0.07-0.24 mumol) in 1 ml of gallbladder bile.  相似文献   
116.
Surfactant protein D (SP-D) is a collagenous surfactant associated protein synthesized by alveolar type II cells. SP-D was purified from the supernatant of rat bronchoalveolar lavage fluids obtained by centrifugation at 33,000 x gav for 16 h. The contents of SP-D and SP-A in fractions obtained by the centrifugation of rat bronchoalveolar lavage were determined by enzyme-linked immunoassay. The total content of SP-D was approximately 12% of that of SP-A in these lavage fluids. 99.1% of SP-A was present in the 33,000g pellet, whereas 71.1% of SP-D was in the 33,000g supernatant. Analysis by high performance liquid chromatography reveals that lipids are copurified with isolated SP-D. Phosphatidylcholine accounted for 84.8% of the phospholipids copurified with SP-D. Unlike SP-A, SP-D in the purified and delipidated form failed to compete with 125I-labeled SP-A for phosphatidylcholine binding, and to aggregate phospholipid liposomes. The present study demonstrates that lipids are copurified with SP-D, that SP-D and SP-A distribute differently in rat bronchoalveolar lavage fluids, and that SP-D in the purified and delipidated form does not exhibit interaction with lipids in the same fashion as SP-A.  相似文献   
117.
118.
Casein kinase 2 (CK2) has broad phosphorylation activity against various regulatory proteins, which are important survival factors in eukaryotic cells. To clarify the hydration structure and catalytic mechanism of CK2, we determined the crystal structure of the alpha subunit of human CK2 containing hydrogen and deuterium atoms using joint neutron (1.9 Å resolution) and X-ray (1.1 Å resolution) crystallography. The analysis revealed the structure of conserved water molecules at the active site and a long potential hydrogen bonding network originating from the catalytic Asp156 that is well known to enhance the nucleophilicity of the substrate OH group to the γ-phospho group of ATP by proton elimination. His148 and Asp214 conserved in the protein kinase family are located in the middle of the network. The water molecule forming a hydrogen bond with Asp214 appears to be deformed. In addition, mutational analysis of His148 in CK2 showed significant reductions by 40%–75% in the catalytic efficiency with similar affinity for ATP. Likewise, remarkable reductions to less than 5% were shown by corresponding mutations on His131 in death-associated protein kinase 1, which belongs to a group different from that of CK2. These findings shed new light on the catalytic mechanism of protein kinases in which the hydrogen bond network through the C-terminal domain may assist the general base catalyst to extract a proton with a link to the bulk solvent via intermediates of a pair of residues.  相似文献   
119.
120.
Small bispecific antibodies (bsAbs) are important therapeutic molecules and represent the first bsAb format approved by the United States Food and Drug Administration. Diabody (Db), a small bsAb format, has four possible domain orders; we previously reported the differences in the expression levels and cancer growth inhibition effects upon rearranging the domain order of this format. However, there have been no comprehensive reports on domain rearrangements of bispecific single-chain Db (scDb) and tandem single-chain Fv (taFv), which are widely used bsAb formats. In this study, we designed all possible domain orders for scDb and taFv (each with eight variants) with identical Fv pairs and individually expressed all 16 variants using Escherichia coli, Pichia pastoris, and Brevibacillus choshinensis. Comprehensive investigations showed that the intrinsic functions of the variants were similar to each other, regardless of the expression host system, but expression levels varied depending on the format as well as on the host cell. Among the 16 variants, we found a promising candidate that exhibited high activity and productivity. Furthermore, we determined that B. choshinensis is an attractive expression host because of its secretory production of recombinant proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号