首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   436篇
  免费   19篇
  455篇
  2022年   4篇
  2021年   3篇
  2020年   2篇
  2019年   4篇
  2018年   8篇
  2017年   3篇
  2016年   7篇
  2015年   6篇
  2014年   10篇
  2013年   25篇
  2012年   19篇
  2011年   18篇
  2010年   13篇
  2009年   13篇
  2008年   30篇
  2007年   20篇
  2006年   34篇
  2005年   27篇
  2004年   27篇
  2003年   15篇
  2002年   21篇
  2001年   14篇
  2000年   8篇
  1999年   12篇
  1998年   2篇
  1997年   3篇
  1996年   7篇
  1995年   4篇
  1994年   8篇
  1993年   3篇
  1992年   11篇
  1991年   8篇
  1990年   7篇
  1989年   10篇
  1988年   11篇
  1987年   8篇
  1986年   4篇
  1984年   4篇
  1983年   4篇
  1982年   4篇
  1981年   4篇
  1980年   1篇
  1979年   4篇
  1977年   1篇
  1975年   3篇
  1974年   1篇
排序方式: 共有455条查询结果,搜索用时 0 毫秒
101.
102.
Purine permeases (PUPs) mediate the proton-coupled uptake of nucleotide bases and their derivatives into cytosol. PUPs facilitate uptake of adenine, cytokinins and nicotine. Caffeine, a purine alkaloid derived from xanthosine, occurs in only a few eudicot species, including coffee, cacao, and tea. Although caffeine is not an endogenous metabolite in Arabidopsis and rice, AtPUP1 and OsPUP7 were suggested to transport caffeine. In this study, we identified 15 PUPs in the genome of Coffea canephora. Direct uptake measurements in yeast demonstrated that CcPUP1 and CcPUP5 facilitate adenine – but not caffeine – transport. Adenine uptake was pH-dependent, with increased activity at pH 3 and 4, and inhibited by nigericin, a potassium–proton ionophore, suggesting that CcPUP1 and CcPUP5 function as proton-symporters. Furthermore, adenine uptake was not competitively inhibited by an excess amount of caffeine, which implies that PUPs of C. canephora have evolved to become caffeine-insensitive to promote efficient uptake of adenine into cytosol.  相似文献   
103.
Transferrin receptor-1 (TfR1) is a cell membrane-associated glycoprotein responsible for incorporation of the iron bound to transferrin through an endocytotic process from the circulating blood. Iron is believed to play a dual role as an active center of the electron transfer system in mitochondria and as an endogenous cytotoxin through promoted generation of reactive oxygen species in different eukaryotic cells. In this study, we evaluated expression profiles of different genes related to iron mobilization across plasma membranes in neuronal cells. Marked mRNA expression was seen for various iron-related genes such as TfR1 in cultured mouse neocortical neurons, while TfR1 mRNA levels were more than doubled during culture from 3 to 6days. In mouse embryonal carcinoma P19 cells endowed to differentiate into neuronal and astroglial lineages, a transient increase was seen in both mRNA and corresponding protein for TfR1 in association with neuronal marker expression during culture with all-trans retinoic acid (ATRA). In neuronal Neuro2A cells cultured with ATRA, moreover, neurite was elongated together with increased expression of both mRNA and protein for TfR1. Overexpression of TfR1 significantly decreased the length of neurite elongated, however, while significant promotion was invariably seen in the neurite elongation in Neuro2A cells transfected with TfR1 siRNA as well as in Neuro2A cells cultured with an iron chelator. These results suggest that TfR1 would be highly expressed by neurons rather than astroglia to play a negative role in the neurite outgrowth after the incorporation of circulating transferrin in the brain.  相似文献   
104.
Triterpene saponins are a diverse group of biologically functional products in plants. Saponins usually are glycosylated, which gives rise to a wide diversity of structures and functions. In the group A saponins of soybean (Glycine max), differences in the terminal sugar species located on the C-22 sugar chain of an aglycone core, soyasapogenol A, were observed to be under genetic control. Further genetic analyses and mapping revealed that the structural diversity of glycosylation was determined by multiple alleles of a single locus, Sg-1, and led to identification of a UDP-sugar-dependent glycosyltransferase gene (Glyma07g38460). Although their sequences are highly similar and both glycosylate the nonacetylated saponin A0-αg, the Sg-1(a) allele encodes the xylosyltransferase UGT73F4, whereas Sg-1(b) encodes the glucosyltransferase UGT73F2. Homology models and site-directed mutagenesis analyses showed that Ser-138 in Sg-1(a) and Gly-138 in Sg-1(b) proteins are crucial residues for their respective sugar donor specificities. Transgenic complementation tests followed by recombinant enzyme assays in vitro demonstrated that sg-1(0) is a loss-of-function allele of Sg-1. Considering that the terminal sugar species in the group A saponins are responsible for the strong bitterness and astringent aftertastes of soybean seeds, our findings herein provide useful tools to improve commercial properties of soybean products.  相似文献   
105.
Cell-matrix and cell-cell junctions cross-talk together, and these two junctions cooperatively regulate cell movement, proliferation, adhesion, and polarization. However, the mechanism of this cross-talk remains unknown. An immunoglobulin-like cell-cell adhesion molecule nectin first trans-interacts with each other to form cell-cell adhesion and induces activation of Rap1, Cdc42, and Rac small G proteins through c-Src. Trans-interacting nectin then recruits another cell-cell adhesion molecule cadherin to the nectin-based cell-cell adhesion sites and forms adherens junctions (AJs). Here, we show that integrin alpha(v)beta3 functionally and physically associates with nectin. Integrin alpha(v)beta3 colocalized with nectin at the nectin-based cell-cell adhesion sites. The association of integrin alpha(v)beta3 with nectin was direct and was mediated through their extracellular regions. This interaction was necessary for the nectin-induced signaling. Focal adhesion kinase, which relays the integrin-initiated outside-in signals to the intracellular signaling molecules, was also involved in the nectin-induced signaling. During the formation of AJs, the high affinity form of integrin alpha(v)beta3 co-localized with nectin at the primordial cell-cell contact sites, and then after the establishment of AJs, this high affinity form of integrin alpha(v)beta3 was converted to the low affinity form, which continued to co-localize with nectin. Thus, integrin alpha(v)beta3 and nectin play pivotal roles in the cross-talk between cell-matrix and cell-cell junctions and the formation of cadherin-based AJs.  相似文献   
106.
107.
108.
Caffeine (1,3,7–trimethylxanthine) is one of the most widely used plant secondary metabolites, primarily as a stimulant and an ingredient in drugs. In nature, caffeine is believed to function in chemical defense, acting as an antiherbivory and allelopathic agent, and therefore it might be employed to protect agriculturally important crop plants. In coffee plants, caffeine is synthesized from the precursor xanthosine in four steps, three N-methylations and removal of ribose. We had previously isolated genes encoding three distinct N-methyltransferases, and we demonstrated production of recombinant enzymes that yielded caffeine in in vitro reconstitution experiments. When these caffeine biosynthetic pathway genes were simultaneously expressed in tobacco plants (Nicotiana tabacum), caffeine was successfully produced up to 5 μg/g fresh weight in leaves. The leaves were unpalatable to tobacco cutworms (Spodoptera litura). This repellent action appeared to be more widely␣applicable to lepidopteran caterpillars as observed with small white (Pieris rapae) fed on Chinese cabbages that had been top-treated with caffeine. Our recent results suggest a novel approach to strengthen anti-herbivore traits by producing caffeine in crop plants.  相似文献   
109.
110.
Neuropilin-1 (NRP1) is a multifunctional transmembrane protein which has a short cytoplasmic region with no particular functional domain, and is considered to act as a co-receptor for both VEGFs and semaphorins. However, the molecular mechanisms by which NRP1 carries out such versatile functions are still poorly understood. Here we identified protein kinase CK2 holoenzyme as a novel NRP1 binding protein by our combined purification strategy using epitope-tag immunoprecipitation followed by reverse-phase column chromatography. Further we showed that CK2 binds to the extracellular domain of NRP1 which is also phosphorylated by CK2 both in vitro and in vivo. Our findings of novel molecular interactions and modification of NRP1 may provide a new clue to understand the diverse functions of NRP1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号