首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8064篇
  免费   446篇
  国内免费   3篇
  2023年   17篇
  2022年   53篇
  2021年   108篇
  2020年   55篇
  2019年   89篇
  2018年   103篇
  2017年   115篇
  2016年   155篇
  2015年   264篇
  2014年   304篇
  2013年   515篇
  2012年   503篇
  2011年   489篇
  2010年   358篇
  2009年   316篇
  2008年   535篇
  2007年   510篇
  2006年   524篇
  2005年   497篇
  2004年   507篇
  2003年   496篇
  2002年   492篇
  2001年   95篇
  2000年   84篇
  1999年   120篇
  1998年   107篇
  1997年   87篇
  1996年   74篇
  1995年   64篇
  1994年   76篇
  1993年   70篇
  1992年   55篇
  1991年   57篇
  1990年   41篇
  1989年   50篇
  1988年   56篇
  1987年   33篇
  1986年   33篇
  1985年   50篇
  1984年   54篇
  1983年   30篇
  1982年   32篇
  1981年   34篇
  1980年   17篇
  1979年   31篇
  1978年   20篇
  1977年   20篇
  1976年   18篇
  1971年   16篇
  1970年   19篇
排序方式: 共有8513条查询结果,搜索用时 46 毫秒
991.
Chitosan is a biodegradable and biocompatible polymer and is useful as a non-viral vector for gene delivery. In order to deliver pDNA/chitosan complex into macrophages expressing a mannose receptor, mannose-modified chitosan (man-chitosan) was employed. The cellular uptake of pDNA/man-chitosan complexes through mannose recognition was then observed. The pDNA/man-chitosan complexes showed no significant cytotoxicity in mouse peritoneal macrophages, while pDNA/man-PEI complexes showed strong cytotoxicity. The pDNA/man-chitosan complexes showed much higher transfection efficiency than pDNA/chitosan complexes in mouse peritoneal macrophages. Observation with a confocal laser microscope suggested differences in the cellular uptake mechanism between pDNA/chitosan complexes and pDNA/man-chitosan complexes. Mannose receptor-mediated gene transfer thus enhances the transfection efficiency of pDNA/chitosan complexes.  相似文献   
992.
Disruption of eshA, which encodes a 52-kDa protein that is produced late during the growth of Streptomyces coelicolor A3(2), resulted in elimination of actinorhodin production. In contrast, disruption of eshB, a close homologue of eshA, had no effect on antibiotic production. The eshA disruptant accumulated lower levels of ppGpp than the wild-type strain accumulated. The loss of actinorhodin production in the eshA disruptant was restored by expression of a truncated relA gene, which increased the ppGpp level to the level in the wild-type strain, indicating that the reduced ppGpp accumulation in the eshA mutant was solely responsible for the loss of antibiotic production. Antibiotic production was also restored in the eshA mutant by introducing mutations into rpoB (encoding the RNA polymerase β subunit) that bypassed the requirement for ppGpp, which is consistent with a role for EshA in modulating ppGpp levels. EshA contains a cyclic nucleotide-binding domain that is essential for its role in triggering actinorhodin production. EshA may provide new insights and opportunities to unravel the molecular signaling events that occur during physiological differentiation in streptomycetes.  相似文献   
993.
994.
Enteropathogenic Escherichia coli (EPEC) secretes many Esps (E. coli-secreted proteins) and effectors via the type III secretion (TTS) system. We previously identified a novel needle complex (NC) composed of a basal body and a needle structure containing an expandable EspA sheath-like structure as a central part of the EPEC TTS apparatus. To further investigate the structure and protein components of the EPEC NC, we purified it in successive centrifugal steps. Finally, NCs with long EspA sheath-like structures could be separated from those with short needle structures on the basis of their densities. Although the highly purified NC appeared to lack an inner ring in the basal body, its core structure, composed of an outer ring and a central rod, was observed by transmission electron microscopy. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry, Western blot, and immunoelectron microscopic analyses revealed that EscC was a major protein component of the outer ring in the core basal body. To investigate the mechanisms of assembly of the basal body, interactions between the presumed components of the EPEC TTS apparatus were analyzed by a glutathione S-transferase pulldown assay. The EscC outer ring protein was associated with both the EscF needle protein and EscD, a presumed inner membrane protein. EscF was also associated with EscJ, a presumed inner ring protein. Furthermore, escC, escD, and escJ mutant strains were unable to produce the TTS apparatus, and thereby the secretion of the Esp proteins and Tir effector was abolished. These results indicate that EscC, EscD, and EscJ are required for the formation of the TTS apparatus.  相似文献   
995.
996.
Sialic acids are widely distributed among living creatures, from bacteria to mammals, but it has been commonly accepted that they do not exist in plants. However, with the progress of genome analyses, putative gene homologs of animal sialyltransferases have been detected in the genome of some plants. In this study, we cloned three genes from Oryza sativa (Japanese rice) that encode sialyltransferase-like proteins, designated OsSTLP1, 2, and 3, and analyzed the enzymatic activity of the proteins. OsSTLP1, 2, and 3 consist of 393, 396, and 384 amino acids, respectively, and each contains sequences similar to the sialyl motifs that are highly conserved among animal sialyltransferases. The recombinant soluble forms of OsSTLPs produced by COS-7 cells were analyzed for sialyltransferase-like activity. OsSTLP1 exhibited such activity toward the oligosaccharide Galbeta1,4GlcNAc and such glycoproteins as asialofetuin, alpha1-acid glycoprotein, and asialo-alpha1-acid glycoprotein; OsSTLP3 exhibited similar activity toward asialofetuin; and OsSTLP2 exhibited no sialyltransferase-like activity. The sialic acid transferred by OsSTLP1 or 3 was linked to galactose of Galbeta1,4GlcNAc through alpha2,6-linkage. This is the first report of plant proteins having sialyltransferase-like activity.  相似文献   
997.
In this study, we report the purification, initial structural characterization, and functional analysis of the molecular chaperone ClpB from the gram-positive, halophilic lactic acid bacterium Tetragenococcus halophilus. A recombinant T. halophilus ClpB (ClpB(Tha)) was overexpressed in Escherichia coli and purified by affinity chromatography, hydroxyapatite chromatography, and gel filtration chromatography. As demonstrated by gel filtration chromatography, chemical cross-linking with glutaraldehyde, and electron microscopy, ClpB(Tha) forms a homohexameric single-ring structure in the presence of ATP under nonstress conditions. However, under stress conditions, such as high-temperature (>45 degrees C) and high-salt concentrations (>1 M KCl), it dissociated into dimers and monomers, regardless of the presence of ATP. The hexameric ClpB(Tha) reactivated heat-aggregated proteins dependent upon the DnaK system from T. halophilus (KJE(Tha)) and ATP. Interestingly, the mixture of dimer and monomer ClpB(Tha), which was formed under stress conditions, protected substrate proteins from thermal inactivation and aggregation in a manner similar to those of general molecular chaperones. From these results, we hypothesize that ClpB(Tha) forms dimers and monomers to function as a holding chaperone under stress conditions, whereas it forms a hexamer ring to function as a disaggregating chaperone in cooperation with KJE(Tha) and ATP under poststress conditions.  相似文献   
998.
When malaria parasites enter to mosquitoes, they fertilize and differentiate to zygotes and ookinetes. The motile ookinetes cross the midgut cells and arrive to the basement membranes where they differentiate into oocysts. The midgut epithelium is thus a barrier for ookinetes to complete their life cycle in the mosquitoes. The ookinetes develop gliding motility to invade midgut cells successfully, but the molecular mechanisms behind are poorly understood. Here, we identified a single molecule with guanylate cyclase domain and N-terminal P-type ATPase like domain in the rodent malaria parasite Plasmodium berghei and named it PbGCbeta. We demonstrated that transgenic parasites in which the PbGCbeta gene was disrupted formed normal ookinetes but failed to produce oocyst. Confocal microscopic analysis showed that the disruptant ookinetes remained on the surface of the microvilli. The disruptant ookinetes showed severe defect in motility, resulting in failure of parasite invasion of the midgut epithelium. When the disruptant ookinetes were cultured in vitro, they transformed into oocysts and sporozoites. These results demonstrate that PbGCbeta is essential for ookinete motility when passing through the midgut cells, but not for further development of the parasites.  相似文献   
999.
Yagi N  Iwamoto H  Inoue K 《Biophysical journal》2006,91(11):4110-4120
Structural changes in the myosin cross-bridges were studied by small-angle x-ray diffraction at a time resolution of 0.53 ms. A frog sartorius muscle, which was electrically stimulated to induce isometric contraction, was released by approximately 1% in 1 ms, and then its length was decreased to allow steady shortening with tension of approximately 30% of the isometric level. Intensity of all reflections reached a constant level in 5-8 ms. Intensity of the 7.2-nm meridional reflection and the (1,0) sampling spot of the 14.5-nm layer line increased after the initial release but returned to the isometric level during steady shortening. The 21.5-nm meridional reflection showed fast and slow components of intensity increase. The intensity of the 10.3-nm layer line, which arises from myosin heads attached to actin, decreased to a steady level in 2 ms, whereas other reflections took longer, 5-20 ms. The results show that myosin heads adapt quickly to an altered level of tension, and that there is a distinct structural state just after a quick release.  相似文献   
1000.
The thermophilic, obligately chemolithoautotrophic hydrogen-oxidizing bacterium, Hydrogenobacter thermophilus TK-6, assimilates carbon dioxide via the reductive tricarboxylic acid cycle. A gene cluster, porEDABG, encoding pyruvate:ferredoxin oxidoreductase (POR), which plays a key role in this cycle, was cloned and sequenced. The nucleotide sequence and the gene organization were similar to those of the five subunit-type 2-oxoglutarate:ferredoxin oxidoreductase from this strain, although the anabolic POR had been previously reported to consist of four subunits. A small protein (8 kDa) encoded by porE, which had not been detected in the previous work, was identified in the purified recombinant POR expressed in Escherichia coli, indicating that the enzyme is also a five-subunit type. Incorporation of PorE in the wild-type POR enzyme was confirmed by immunological analysis. PorA, PorB, PorG, and PorE were similar to the alpha, beta, gamma, and delta subunits of the four subunit-type 2-oxoacid oxidoreductases, respectively, and had conserved specific motifs. PorD had no specific motifs but was essential for the expression of the active enzyme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号