首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7389篇
  免费   426篇
  国内免费   3篇
  2023年   17篇
  2022年   45篇
  2021年   105篇
  2020年   54篇
  2019年   85篇
  2018年   98篇
  2017年   109篇
  2016年   141篇
  2015年   258篇
  2014年   293篇
  2013年   488篇
  2012年   469篇
  2011年   478篇
  2010年   346篇
  2009年   299篇
  2008年   512篇
  2007年   495篇
  2006年   514篇
  2005年   481篇
  2004年   477篇
  2003年   471篇
  2002年   458篇
  2001年   68篇
  2000年   52篇
  1999年   100篇
  1998年   100篇
  1997年   79篇
  1996年   74篇
  1995年   60篇
  1994年   74篇
  1993年   66篇
  1992年   47篇
  1991年   44篇
  1990年   29篇
  1989年   22篇
  1988年   39篇
  1987年   22篇
  1986年   25篇
  1985年   20篇
  1984年   29篇
  1983年   14篇
  1982年   28篇
  1981年   25篇
  1980年   14篇
  1979年   23篇
  1978年   7篇
  1977年   15篇
  1976年   8篇
  1973年   7篇
  1970年   6篇
排序方式: 共有7818条查询结果,搜索用时 31 毫秒
991.
Zygospore formation in different strains of the Closterium peracerosum-strigosum-littorale complex was examined in this unicellular isogamous charophycean alga to shed light on gametic mating strains in this taxon, which is believed to share a close phylogenetic relationship with land plants. Zygospores typically form as a result of conjugation between mating-type plus (mt+) and mating-type minus (mt) cells during sexual reproduction in the heterothallic strain, similar to Chlamydomonas. However, within clonal cells, zygospores are formed within homothallic strains, and the majority of these zygospores originate as a result of conjugation of two recently divided sister gametangial cells derived from one vegetative cell. In this study, we analyzed conjugation of homothallic cells in the presence of phylogenetically closely related heterothallic cells to characterize the reproductive function of homothallic sister gametangial cells. The relative ratio of non-sister zygospores to sister zygospores increased in the presence of heterothallic mt+ cells, compared with that in the homothallic strain alone and in a coculture with mt cells. Heterothallic cells were surface labeled with calcofluor white, permitting fusions with homothallic cells to be identified and confirming the formation of hybrid zygospores between the homothallic cells and heterothallic mt+ cells. These results show that at least some of the homothallic gametangial cells possess heterothallic mt-like characters. This finding supports speculation that division of one vegetative cell into two sister gametangial cells is a segregative process capable of producing complementary mating types.  相似文献   
992.
Arbuscular mycorrhizal fungi (AMF) have been observed in deep soil layers in arid lands. However, change in AMF community structure with soil depth and vertical distributions of the other root-associated microorganisms are unclear. Here, we examined colonization by AMF and dark septate fungi (DSF), as well as the community structure of AMF and endophytic fungi (EF) and endophytic bacteria (EB) in association with soil depth in a semiarid desert with shallow groundwater. Roots of Sabina vulgaris and soils were collected from surface to groundwater level at 20-cm intervals. Soil chemistry (water content, total N, and available P) and colonization of AMF and DSF were measured. Community structures of AMF, EF, and EB were examined by terminal restriction fragment length polymorphism analysis. AMF colonization decreased with soil depth, although it was mostly higher than 50%. Number of AMF phylotypes decreased with soil depth, but more than five phylotypes were observed at depths up to 100 cm. Number of AMF phylotypes had a significant and positive relationship with soil moisture level within 0-15% of soil water content. DSF colonization was high but limited to soil surface. Number of phylotypes of EF and EB were diverse even in deep soil layers, and the community composition was associated with the colonization and community composition of AMF. This study indicates that AMF species richness in roots decreases but is maintained in deep soil layers in semiarid regions, and change in AMF colonization and community structure associates with community structure of the other root-associated microorganisms.  相似文献   
993.
994.
Phyllochron, defined as the interval time between appearances of successive leaves on a shoot, is an important measurement to know the developmental state of a shoot apex in rice. Previous studies revealed that phyllochron dynamics during the course of shoot development of rice was divided into three stages, regardless of environment and genotype: (1) maintenance of short phyllochron in the early developmental stage, (2) drastic increase of phyllochron depending on leaf number from the base in the late stage, and (3) decrease of phyllochron before final-leaf stage. Recent studies of shoot development of rice suggested that the first and the second stage might reflect the internal state of juvenile and adult phase, respectively. The remaining question is what internal state is related to the third stage. In the present study, to give a suggestion for the question, we performed the two experiments using near-isogenic lines (NILs) for flowering-time genes. First, using new data from the previous study, we statistically showed that reproductive initiation significantly affected the decreasing point of phyllochron dynamics during the late shoot development. Second, we demonstrated that photoperiod-strongly sensitive NILs tended to maintain increase of phyllochron during the course of late development when reproductive initiation was inhibited by an extremely long day condition. Then, we suggest that reproductive initiation might trigger suppression of internal increase of phyllochron during the late development. Variation of pattern of the phyllochron dynamics between environments and between genotypes, which has been identified by the previous studies, was discussed based on the suggestion.  相似文献   
995.
A lectin was purified from the mushroom Hygrophorus russula by affinity chromatography on a Sephadex G-50 column and BioAssist S cation exchange chromatography and designated H. russula lectin (HRL). The results of sodium dodecyl sulfate-polyaclylamidegel electrophoresis, gel filtration and matrix-assisted laser desorption ionization time-of-flight mass spectrometry of HRL indicated that it was composed of four identical 18.5?kDa subunits with no S-S linkage. Isoelectric focusing of the lectin showed bands near pI 6.40. The complete sequence of 175 amino acid residues was determined by amino acid sequencing of intact or enzyme-digested HRL. The sequence showed homology with Grifola frondosa lectin. The cDNA of HRL was cloned from RNA extracted from the mushroom. The open reading frame of the cDNA consisted of 528?bp encoding 176 amino acids. In hemagglutination inhibition assay, α1-6 mannobiose was the strongest inhibitor and isomaltose, Glcα1-6Glc, was the second strongest one, among mono- and oligosaccharides tested. Frontal affinity chromatography indicated that HRL had the highest affinity for Manα1-6(Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAc, and non-reducing terminal Manα1-6 was essential for the binding of HRL to carbohydrate chains. The sugar-binding specificity of HRL was also analyzed by using BIAcore. The result from the analysis exhibited positive correlations with that of the hemagglutination inhibition assay. All the results suggested that HRL recognized the α1-6 linkage of mannose and glucose, especially the Manα1-6 bond. HRL showed a mitogenic activity against spleen lymph cells of an F344 rat. Furthermore, an enzyme-linked immunosorbent assay showed strong binding of HRL to human immunodeficiency virus type-1 gp120.  相似文献   
996.
AimsInsulin/insulin-like growth factor-1 (IGF-1) signaling plays an important role in many biological processes. The class IA isoform of phosphoinositide 3-kinase (PI3K) is an important downstream effector of the insulin/IGF-1 signaling pathway. The aim of this study is to examine the effect of persistent activation of PI3K on gene expression and markers of cellular senescence in murine hearts.Main methodsTransgenic mice expressing a constitutively active PI3K in a heart-specific manner were analyzed at the ages of 3 and 20 months. Effects of persistent activation of PI3K on gene expression were comprehensively analyzed using microarrays.Key findingsUpon comprehensive gene expression profiling, the genes whose expression was increased included those for several heat shock chaperons. The amount and nuclear localization of a forkhead box O (FOXO) protein was increased. In addition, the gene expression of insulin receptor substrate-2 decreased, and that of phosphatase and tensin homolog deleted on chromosome ten (PTEN) increased, suggesting that the persistent activation of PI3K modified the expression of molecules of insulin/IGF-1 signaling. The expression of markers of cellular senescence, such as senescence-associated beta-galactosidase activity, cell cycle inhibitors, proinflammatory cytokines, and lipofuscin, did not differ between old wild-type and caPI3K mice.SignificanceThe persistent activation of PI3K modified the expression of molecules of insulin/IGF-1 signaling pathway in a transgenic mouse line. Markers of cellular senescence were not changed in the aged mutant mice.  相似文献   
997.
Seeds provide food, feed, fiber and fuel. They are also an important delivery system of genetic information, which is essential for the survival of wild species in ecosystems and the production of agricultural crops. In this review, seed traits and genes that are potentially important for agricultural applications are discussed. Over the long period of crop domestication, seed traits have been modified through intentional or unintentional selections. While most selections have led to seed traits favorable for agricultural consumption, such as larger seeds with higher nutritional value than the wild type, other manipulations in modern breeding sometimes led to negative traits, such as vivipary, precocious germination on the maternal plant or reduced seed vigor, as a side effect during the improvement of other characteristics. Greater effort is needed to overcome these problems that have emerged as a consequence of crop improvement. Seed biology researchers have characterized the function of many genes in the last decade, including those associated with seed domestication, which may be useful in addressing critical issues in modern agriculture, such as the prevention of vivipary and seed shattering or the enhancement of yields. Recent discoveries in seed biology research are highlighted in this review, with an emphasis on their potential for translational biology.  相似文献   
998.
Based on previous conflicting reports that the two forms of pig-tailed macaque (northern and southern) exist as separate species, subspecies, or forms, and that their boundary zone lies in Thailand, a survey of the distribution range and morphology of pig-tailed macaques in Thailand was conducted during 2003–2010. We first conducted a questionnaire survey. Questionnaires were sent to 7,410 subdistricts throughout Thailand. We then traveled to 72 of the 123 subdistricts reporting the presence of pig-tailed macaques. However, due to a lack of reports of the presence of free-ranging pig-tailed macaques living south of the Isthmus of Kra, a survey of pet pig-tailed macaques was also conducted during 16–24 September 2011. Furthermore, 35 wild northern pig-tailed macaques inhabiting northern Thailand (13°13′N, 101°03′E) were temporarily caught and their morphological characters were measured and then compared to those of the southern form captured from Sumatra, Indonesia. Although largely allopatric, the ranges of the northern and southern pig-tailed macaques in Thailand were found to have a partially sympatric boundary at the Surat Thani–Krabi depression (8–9°30′N). Morphologically, these two forms were very distinctive, with different morphological characters such as the crown patch, the white color of the triangle above the eyes, the red streak at the external rim of the eyes, pelage color, ischial callosity, tail length and carriage, facial height, and limb length in both sexes, and patterns of sex skin swelling and reddening in females. These differences in morphological characters between the northern and southern forms should help settle the problems of their taxonomy.  相似文献   
999.
In Arabidopsis thaliana, lateral root (LR) formation is regulated by multiple auxin/indole-3-acetic acid (Aux/IAA)–AUXIN RESPONSE FACTOR (ARF) modules: (i) the IAA28–ARFs module regulates LR founder cell specification; (ii) the SOLITARY-ROOT (SLR)/IAA14–ARF7–ARF19 module regulates nuclear migration and asymmetric cell divisions of the LR founder cells for LR initiation; and (iii) the BODENLOS/IAA12–MONOPTEROS/ARF5 module also regulates LR initiation and organogenesis. The number of Aux/IAA–ARF modules involved in LR formation remains unknown. In this study, we isolated the shy2-101 mutant, a gain-of-function allele of short hypocotyl2/suppressor of hy2 (shy2)/iaa3 in the Columbia accession. We demonstrated that the shy2-101 mutation not only strongly inhibits LR primordium development and emergence but also significantly increases the number of LR initiation sites with the activation of LATERAL ORGAN BOUNDARIES-DOMAIN16/ASYMMETRIC LEAVES2-LIKE18, a target gene of the SLR/IAA14–ARF7–ARF19 module. Genetic analysis revealed that enhanced LR initiation in shy2-101 depended on the SLR/IAA14–ARF7–ARF19 module. We also showed that the shy2 roots contain higher levels of endogenous IAA. These observations indicate that the SHY2/IAA3–ARF-signalling module regulates not only LR primordium development and emergence after SLR/IAA14–ARF7–ARF19 module-dependent LR initiation but also inhibits LR initiation by affecting auxin homeostasis, suggesting that multiple Aux/IAA–ARF modules cooperatively regulate the developmental steps during LR formation.  相似文献   
1000.
Agricultural production is under increasing pressure by global anthropogenic changes, including rising population, diversion of cereals to biofuels, increased protein demands and climatic extremes. Because of the immediate and dynamic nature of these changes, adaptation measures are urgently needed to ensure both the stability and continued increase of the global food supply. Although potential adaption options often consider regional or sectoral variations of existing risk management (e.g. earlier planting dates, choice of crop), there may be a global-centric strategy for increasing productivity. In spite of the recognition that atmospheric carbon dioxide (CO(2)) is an essential plant resource that has increased globally by approximately 25 per cent since 1959, efforts to increase the biological conversion of atmospheric CO(2) to stimulate seed yield through crop selection is not generally recognized as an effective adaptation measure. In this review, we challenge that viewpoint through an assessment of existing studies on CO(2) and intraspecific variability to illustrate the potential biological basis for differential plant response among crop lines and demonstrate that while technical hurdles remain, active selection and breeding for CO(2) responsiveness among cereal varieties may provide one of the simplest and direct strategies for increasing global yields and maintaining food security with anthropogenic change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号