首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7472篇
  免费   424篇
  国内免费   3篇
  2023年   17篇
  2022年   44篇
  2021年   104篇
  2020年   53篇
  2019年   87篇
  2018年   98篇
  2017年   111篇
  2016年   142篇
  2015年   259篇
  2014年   294篇
  2013年   511篇
  2012年   477篇
  2011年   479篇
  2010年   351篇
  2009年   303篇
  2008年   512篇
  2007年   493篇
  2006年   509篇
  2005年   481篇
  2004年   480篇
  2003年   466篇
  2002年   461篇
  2001年   63篇
  2000年   61篇
  1999年   103篇
  1998年   104篇
  1997年   78篇
  1996年   75篇
  1995年   63篇
  1994年   72篇
  1993年   65篇
  1992年   52篇
  1991年   44篇
  1990年   23篇
  1989年   26篇
  1988年   36篇
  1987年   21篇
  1986年   25篇
  1985年   20篇
  1984年   29篇
  1983年   20篇
  1982年   31篇
  1981年   28篇
  1980年   16篇
  1979年   24篇
  1978年   12篇
  1977年   18篇
  1976年   10篇
  1975年   8篇
  1973年   8篇
排序方式: 共有7899条查询结果,搜索用时 62 毫秒
991.
The neoplastic transformation by mutant RAS is thought to require remodeling of expression of an entire set of genes. However, the underlying mechanism for initiation of gene expression remodeling in tumorigenesis remains elusive. This study was aimed to define the oncogenic role of EZH2, a histone modifier protein that is induced by oncogenic mutant RAS, using pancreatic cancers of transgenic rats exogenously expressing human mutant RAS. Immunohistochemical observation of preneoplastic or cancerous lesions in the animal model suggested that upregulation of Ezh2 protein is an initiating event in pancreatic carcinogenesis. MEK-inhibition or Elk-1-knockdown downregulated EZH2, and MEK-inhibition or EZH2-knockdown restored expression of a tumor suppressor, RUNX3 in human and rat pancreatic cancer cells activated by the oncogenic RAS. Furthermore, Elk-1- or EZH2-knockdown inhibited growth of the cancer cells. These results strongly suggested that the oncogenic RAS upregulates EZH2 through MEK-ERK signaling, resulted in downregulation of tumor suppressors including RUNX3 in pancreatic carcinogenesis.  相似文献   
992.
There is a little information about the effects of iron overload on cartilage metabolism. In the present study, we examined the effects of excess iron on the differentiation and mineralization of cultured chondrocytes, ATDC5 cells. We used ferric ammonium citrate (FAC) as a ferric ion donor and desferrioxamine (DFO) as a ferric ion chelator. Neither chemical affected the production of proteoglycan, a marker of an early stage of ATDC5 differentiation. In contrast, FAC inhibited the deposition of calcium, a late-stage event in chondrocyte differentiation, by ATDC5 cells in a dose-dependent manner, and DFO accelerated it. Energy dispersive X-ray spectroscopy/scanning electron microscope analysis revealed that the levels of iron and calcium in cells treated with FAC were increased and decreased, respectively. Furthermore, FAC inhibited the expression of matrix metalloproteinase 13 mRNA, another marker of late-stage chondrocyte differentiation. In addition, we found that the heavy and light chains of ferritin were expressed specifically at a late stage of ATDC5 differentiation, and the levels of both proteins were enhanced by the addition of iron. These results suggest that iron overload might give rise to osteopenia and arthritis by inhibiting chondrocyte differentiation and mineralization.  相似文献   
993.
The distribution of pink-pigmented facultative methylotrophs (PPFMs) on the leaves of various vegetables was studied. All kinds of vegetable leaves tested gave pink-pigmented colonies on agar plates containing methanol as sole carbon source. The numbers of PPFMs on the leaves, colony-forming units (CFU)/g of fresh leaves, differed among the plants, although they were planted and grown at the same farm. Commercial green perilla, Perilla frutescens viridis (Makino) Makino, gave the highest counts of PPFMs (2.0-4.1×10(7) CFU/g) of all the commercial vegetable leaves tested, amounting to 15% of total microbes on the leaves. The PPFMs isolated from seeds of two varieties of perilla, the red and green varieties, exhibited high sequence similarity as to the 16S rRNA gene to two different Methylobacterium species, M. fujisawaense DSM5686(T) and M. radiotolerans JCM2831(T) respectively, suggesting that there is specific interaction between perilla and the PPFMs.  相似文献   
994.
The immune system of plants consists of two main arms, pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI). The multiple effectors that trigger ETI are translocated into plant cells by the type III secretion system (T3SS) of pathogenic bacteria. The rice-avirulent N1141 strain of Acidovorax avenae causes ETI in rice, including hypersensitive response (HR) cell death. Sequence analysis indicated that the N1141 genome contains the hrp gene cluster (35.3 kb), including genes encoding the T3SS apparatus. The T3SS-defective N1141 mutant (NΔT3SS) did not cause HR cell death, suggesting that ETI is caused by translocation of effector proteins into rice cells via T3SS. Computational sequence analysis predicted that Lrp, HrpW, and HrpY are secreted by T3SS. The hrpY deletion mutant (NΔhrpY) did not cause ETI, suggesting that HrpY is an important effector of ETI in the interaction between A. avenae N1141 and rice.  相似文献   
995.
Peptide arrays in which peptides were immobilized on cellulose membranes through photolinkers were synthesized. The peptides were subsequently detached from the arrays by ultraviolet (UV) photolysis for 3 h, and were used to search for functional peptides that inhibit the activity of α-amylase derived from human pancreatic juice. Amino acid replacement with high-molecular-size amino acids, Arg (R), Phe (F), Trp (W), or Tyr (Y), for the first and seventh residues of amylase inhibitor peptide, GHWYYRCW, as previous reported, led to enhancement of the inhibitory effect of the peptide on α-amylase. In particular, one of the resulting peptides, RHWYYRYW, showed a stronger inhibitory effect than acarbose (which is used as a hypoglycemic agent) or inhibitor peptide GHWYYRCW.  相似文献   
996.
We investigated the occurrence of patchy stomatal behavior in leaves of saplings and a forest canopy tree of Quercus crispula Blume. Through a combination of leaf gas-exchange measurements and numerical simulation, we detected patterns of stomatal closure (either uniform or patchy bimodal) coupled with depression of net assimilation rate (A). There was a clear inhibition of A associated with stomatal closure in leaves of Q. crispula during the day, but the magnitude of inhibition varied among days and growing conditions. Comparisons of observed and simulated A values for both saplings and the canopy tree identified patterns of stomatal behavior that shifted flexibly between uniform and patchy frequency distributions depending on environmental conditions. Bimodal stomatal closure explained severe depression of A in saplings under conditions of relatively high leaf temperature and vapor pressure deficit. Model simulations of A depression through bimodal stomatal closure were corroborated by direct observations of stomatal aperture distribution using Suzuki’s Micro-Printing method; these demonstrated that there was a real bimodal frequency distribution of stomatal apertures. Although there was a heterogeneous distribution of stomatal apertures both within and among patches, induction of heterogeneity in intercellular CO2 concentration among patches, and hence severe depression of A, resulted only from bimodal stomatal closure among patches (rather than within patches).  相似文献   
997.
Nucleobindin-2 is a 420 amino acid EF-hand Ca2+ binding protein that can be further processed to generate an 82 amino terminal peptide termed Nesfatin-1. To examine the function of secreted Nucleobindin-2 in adipocyte differentiation, cultured 3T3-L1 cells were incubated with either 0 or 100 nM of GST, GST-Nucleobindin-2, prior to and during the initiation of adipocyte differentiation. Nucleobindin-2 treatment decreased neutral lipid accumulation (Oil-Red O staining) and expression of several marker genes for adipocyte differentiation (PPARγ, aP2, and adipsin). When Nucleobindin- 2 was constitutively secreted into cultured medium, cAMP content and insulin stimulated CREB phosphorylation were significantly reduced. On the other hand, intracellularly overexpressed Nucleobindin-2 failed to affect cAMP content and CREB phosphorylation. Taken together, these data indicate that secreted Nucleobindin-2 is a suppressor of adipocyte differentiation through inhibition of cAMP production and insulin signal.  相似文献   
998.
Zygospore formation in different strains of the Closterium peracerosum-strigosum-littorale complex was examined in this unicellular isogamous charophycean alga to shed light on gametic mating strains in this taxon, which is believed to share a close phylogenetic relationship with land plants. Zygospores typically form as a result of conjugation between mating-type plus (mt+) and mating-type minus (mt) cells during sexual reproduction in the heterothallic strain, similar to Chlamydomonas. However, within clonal cells, zygospores are formed within homothallic strains, and the majority of these zygospores originate as a result of conjugation of two recently divided sister gametangial cells derived from one vegetative cell. In this study, we analyzed conjugation of homothallic cells in the presence of phylogenetically closely related heterothallic cells to characterize the reproductive function of homothallic sister gametangial cells. The relative ratio of non-sister zygospores to sister zygospores increased in the presence of heterothallic mt+ cells, compared with that in the homothallic strain alone and in a coculture with mt cells. Heterothallic cells were surface labeled with calcofluor white, permitting fusions with homothallic cells to be identified and confirming the formation of hybrid zygospores between the homothallic cells and heterothallic mt+ cells. These results show that at least some of the homothallic gametangial cells possess heterothallic mt-like characters. This finding supports speculation that division of one vegetative cell into two sister gametangial cells is a segregative process capable of producing complementary mating types.  相似文献   
999.
Arbuscular mycorrhizal fungi (AMF) have been observed in deep soil layers in arid lands. However, change in AMF community structure with soil depth and vertical distributions of the other root-associated microorganisms are unclear. Here, we examined colonization by AMF and dark septate fungi (DSF), as well as the community structure of AMF and endophytic fungi (EF) and endophytic bacteria (EB) in association with soil depth in a semiarid desert with shallow groundwater. Roots of Sabina vulgaris and soils were collected from surface to groundwater level at 20-cm intervals. Soil chemistry (water content, total N, and available P) and colonization of AMF and DSF were measured. Community structures of AMF, EF, and EB were examined by terminal restriction fragment length polymorphism analysis. AMF colonization decreased with soil depth, although it was mostly higher than 50%. Number of AMF phylotypes decreased with soil depth, but more than five phylotypes were observed at depths up to 100 cm. Number of AMF phylotypes had a significant and positive relationship with soil moisture level within 0-15% of soil water content. DSF colonization was high but limited to soil surface. Number of phylotypes of EF and EB were diverse even in deep soil layers, and the community composition was associated with the colonization and community composition of AMF. This study indicates that AMF species richness in roots decreases but is maintained in deep soil layers in semiarid regions, and change in AMF colonization and community structure associates with community structure of the other root-associated microorganisms.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号